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1 Background
The commercialization of autonomous machines, including mobile robots, drones,
and autonomous vehicles is a thriving sector, and likely to be the next major
computing demand driver, after PC, cloud computing, and mobile computing.
However, autonomous machines are complex and safety-critical systems with
strict real-time and resource constraints.

Autonomous machines have a deep processing pipeline with strong depen-
dencies between different stages and various local and end-to-end timing con-
straints [1]. Figure 1 shows an example of the processing graph of an autonomous
driving system. Starting from the left side, the system consumes raw sensing
data from mmWave radars, LiDARs, cameras, and GNSS/IMUs, and each sen-
sor produces raw data at a different frequency. The processing components
are invoked with different frequencies, performing computation using the latest
input data, and periodically producing outputs to downstream components.

The cameras capture images at 30 FPS (frame per second) and feed the raw
data to the 2D Perception module, the LiDARs capture point clouds at 10 FPS
and feed the raw data to the 3D Perception module, as well as the Localization
module, the GNSS/IMUs generate positional updates at 100 Hz and feed the
raw data to the Localization module, the mmWave radars detect obstacles at
10 FPS and feed the raw data to the Perception Fusion module. The result of
2D and 3D Perception are fed into the Perception Fusion module to create a
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Figure 1: Processing Graph of an Autonomous Driving System

comprehensive perception list of all detected objects. The perception list is then
fed into the Tracking module to create a tracking list of all detected objects. The
tracking list then is fed into the Prediction module to create a prediction list of
all objects. After that, both the prediction results and the localization results
are fed into the Planning module to generate a navigation plan. The navigation
plan then is fed into the Control module to generate control commands, which
are finally sent to the autonomous vehicle for execution at 100 Hz. The com-
putation components are deployed on different types of processing platforms.
For example, the sensor data processing may be deployed on DSPs, the per-
ception and localization may be deployed on GPUs as they typically require
vector processing, and planning and control tasks can be deployed on CPUs as
they mainly involve scalar processing. In general, the processing graph could be
more complicated than the example shown in Figure 1. There could be more
processing steps in the system. The activation frequency of each component
could also be different from the example.

The system must comply with timing constraints in several aspects to guar-
antee that the final control command outputs can be executed correctly and
timely. First, if some object appears to be close to the vehicle, it must be
guaranteed that its related information can be perceived, processed, and finally
used to generate control commands within a certain time limit. Second, the
control command should be performed based on status information (e.g., the
GNSS/IMU data) sufficiently fresh. Third, when some component receives data
originating from different sensors, the time difference among the timestamps of
the corresponding raw data must be no larger than a pre-defined threshold, so
that information from different sensors can be synchronized and fused. There
have been many attempts on the problem with ad hoc hardware [3] and software
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solutions [2], but a high-level understanding and modeling of the problem is still
missing.

2 Problem Model
In the following, we introduce a problem model based on the architecture and
timing constraints of real-time computing systems for autonomous machines.
Note that this abstract problem model could be more general than the processing
systems that we have already deployed in reality. However, studying the problem
in a more general setting is meaningful to explore a larger design space and deal
with more complex systems that may be developed in the future.

The system consists of a number of tasks executing on a hardware platform
comprising several processing units (e.g., CPU, GPU or DSP). Each task is
statically mapped to a processing unit and the mapping is fixed apriori. The
worst-case execution time (WCET) of each task on the corresponding processing
unit is known in advance.

Each task is activated and releases a job with a given frequency. The fre-
quencies of different tasks are not necessarily the same or harmonic. Each task
reads input data tokens from one or more input ports, and produce output data
tokens to one output port. Tasks are connected through their input/output
ports, with buffers of size 1 in between, as shown in Figure 2. The old data to-
ken in the buffer is over-written when a new data token comes. Tasks read and
write data tokens from/to the buffers in a non-blocking manner. In each activa-
tion, a task reads the current data token in the buffer of each input port when
it starts execution, and writes the output data token to the buffer at its output
port at the end of its execution. We assume that the data communication delay
among different tasks is zero or can be bounded by constants.

Figure 2: Task Model

Some tasks simply generate data tokens based on a given frequency, but
does not read any input data token. We call such tasks the sensing tasks. For
example, in Figure 2, τ1, τ2 and τ3 are sensing tasks. Some sensor data are
status sensing data and some sensor data are event sensing data, so the sensing
tasks are classified into two types: status sensing tasks and event sensing tasks.
Status sensing data are used for reporting the status. Event sensing data are
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(a) cause, source and consequence data token (b) Constraint 1

(c) Constraint 2 (d) Constraint 3

Figure 3: Illustration examples.

used for detecting some event. When an event happens, the output data token
produced by the corresponding sensing task after that will capture this event.
Each sensor data token is associated with a timestamp.

When a task reads several input data tokens (from different input ports) and
produces an output data token, we say each of these input data tokens is the
cause of the output data token. The original sensor data that is indirectly the
cause of a data token is the source of this data token, and this data token is the
consequence of the sensor data. In Figure 3-(a), job J1

4 reads the sensor data
token a1 produced by τ1, and produces an output data token b1, so a1 is the
cause of b1. b1 is the cause of both c1 and c2. a1 is the source of data tokens
b1, c1, c2, d1, d2, d3 and d4, and these data tokens are the consequence of a1.

The system should satisfy the following timing constraints:

Constraint 1: For any event, it must be guaranteed that the first final
data output caused by the event sensor data capturing this event is
produced within a pre-defined time delay after the event occurs.

Let τ1 in Figure 2 be an event sensing task, and an example illustrating
Constraint 1 is shown in Figure 3-(b). An event occurs after the first sensor
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data token produced by τ1, and it will be detected by the second sensor data
token a1. Job J1

7 is the first job of τ7 that produces a final output take token
d1 being the consequence of a1. The maximal time difference the occurrence of
the event and when d1 is produced should be bounded by a pre-defined value
(D in this example).

Constraint 2: Let a be a sensor data token produced by some status
sensing task and b be the final data output indirectly caused by a. If b
is produced at t, then a must be produced no earlier than a pre-defined
value before t.

Now suppose τ1 in Figure 2 is a status sensing task, and an example illus-
trating Constraint 2 is shown in Figure 3-(c). The source of the final data
output d4 produced by job J4

7 is the sensor data token a1 produced by τ1. Con-
straint 2 requires that the difference between the timestamp of a1 and when
d4 is produced should be bounded by a pre-defined value (A in this example).

Constraint 3: For each task, the difference of the timestamps among
all its source data tokens must be upper-bounded by a pre-defined value.

Figure 3-(d) illustrates Constraint 3. f2 has two causes, e1 and d2. d2
has two causes a1 and b2, and e1 has two causes b1 and c1. Therefore, a1, b1,
b2 and c1 are all sources of f2. Constraint 3 requires that the timestamps of
a1, b1, b2 and c1 must be in a range bounded by a pre-defined value (∆ in this
example).

3 Challenge
The problem to solve is to develop scheduling strategies and analysis techniques
to guarantee the systems meet all the above timing constraints. The scheduling
strategy on all processing units must be non-preemptive. We invite not only
general solutions for the above described problem model, but also solutions for
more restrictive versions based it. In other words, you may add more constraints
to the problem model if they are helpful to improve the real-time performance
and/or simply the design and analysis of the problem (e.g., the relative relation
of frequency of different tasks, the maximal number of tasks mapped to each
processing unit, various structural constraints of the processing graph and so
on).
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Abstract—In this paper we address the timing verification
for processing graphs used to implement autonomous driving
systems by the company Perceptin. We demonstrate how to extend
our previous results on end-to-end timing analysis in terms of
maximum reaction time and maximum data age for cause-effect
chains in automotive systems for the posed challenge.

I. INTRODUCTION

Autonomous driving systems require to implement complex
functions consisting of data dependent modules as illustrated
in the processing graph in Figure 1. The nodes in the process-
ing graph denote functional modules such as sensor data pre-
processing, perception, tracking, trajectory planning, and con-
trol. The directed edges in the processing graph denote the data
dependencies between the modules, e.g., the data produced
by the localization module is used by the planning module
in its computation. In the processing graph model, each
module is implemented as an individual task, that is activated
either periodically or sporadically and can be scheduled on
a designated hardware component. The data is communicated
implicitly and asynchronously, i.e., the data token is read from
and written to a shared resource by each task individually
whenever they start and finish their executions.

With respect to guaranteed quality of service, the processing
graph must comply with several aspects of timing constraints.
For instance, the control command must be executed in time
(i.e., each task instance must be finished before its deadline)
and react timely to events such as object detection. More
precisely, a trajectory must be planned and tracked after a
pedestrian is detected by the camera system and the appro-
priate actuation must be commanded within bounded time.
Furthermore, it must be guaranteed that the control command
is based on the freshest available sensor data, and the time
stamp difference of the data samples used for sensor fusion
algorithms can only differ by a maximum specified value.

These kinds of timing constraints have been researched
intensively in the context of cause-effect chains in AUTOSAR
compliant automotive systems, e.g., [1]–[6]. In the literature,
the concepts of maximum reaction time and maximum data
age are used to address end-to-end latencies of processing
chains and to analyze the freshness of the data. The maximum
reaction time refers to the longest latency of the first response
(reaction) of a system to a corresponding stimulus (cause),
e.g., the latency from a camera sample to an object detection,
or to the final actuation. The maximum data age denotes the
largest time interval between the sampling time of a data token

Figure 1: Exemplary processing graph as posed in the RTSS
2021 Industry challenge. Each block in the graph denotes
a sporadic or periodic task that is scheduled and executed
non-preemptively on a dedicated hardware with the annotated
frequency. Data tokens are propagated asynchronously via
buffers where a producer writes a data token at the end of
its execution and a data token consumer reads data at its
beginning.

by a task until the last point in time when the system produces
an output related to that data token.

Most published results in this context only consider preemp-
tive scheduling policies. Nevertheless, we conjecture that the
results in the literature may be extendable without too much
effort. In this paper, we extend our previous results in the
context of end-to-end timing analyses of automotive cause-
effect chains [2], show how to address all posed objectives.
Our Contributions:
• We reduce all posed objectives in the industry challenge

into maximum reaction time and maximum data age
problems and propose an analysis for maximal time stamp
differences of multiple sources of data tokens that merge
in a common task.

II. PROBLEM DEFINITION

The architecture and task system of the proposed au-
tonomous driving system is formally described as a number of
tasks τi ∈ T that are statically mapped onto different process-
ing units, e.g., CPU (Central Processing Unit), GPU (Graphics
Processing Unit), or DSP (Digital Signal Processor) that are
available on the autonomous driving hardware platform.

Definition 1 (Sporadic Task). Each sporadic task is de-
fined by the 4-tuple τi = (Cmin

i , Cmax
i , Tmin

i , Tmax
i ) where

Cmax
i ≤ Tmin

i . Each task releases an infinite sequence



of instances (jobs) τi,` with execution time Ci,` (with
Cmin

i ≤ Ci ≤ Cmax
i ) where the inter-arrival time between two

job releases is at least Tmin
i and at most Tmax

i . The worst-
case execution time (WCET) is given by Cmax

i and best-case
execution time (BCET) of each task is given by Cmin

i .

In our model a periodic task is a specialization of a sporadic
task where Tmin

i coincides with Tmax
i .

Definition 2 (Chain). Let Ej = τj1 → τj2 → . . .→ τjKj
de-

note a chain (path) in the processing graph such that τj2
reads the data token produced by τj1 , τj3 reads the data token
produced by τj2 , etc.

Note that a task τi can be part of multiple chains, e.g.,
τk`

= τjz = τi, which implies that task τi ∈ T is the `-th task
in chain Ek and the z-th task in chain Ej .

Two adjacent tasks in a chain Ej , e.g., τji and τji+1
,

have immediate data dependency. That is, a job of task τji+1

consumes the latest available data token produced by a job of
task τji . This relation is illustrated by the directed edges in
the processing graph in Figure 1.

Each data token is stored in a buffer that can be read
and written atomically without synchronization. The old data
token in the buffer is over-written when a new data token is
produced. Each task reads the latest data token from each of
its (many) input ports and produces output data tokens that are
written to their designated buffers in its output ports. Under
this scheme, each task reads and writes data from and to the
buffers in a non-blocking manner. In each task activation (job),
a job reads the current data token of each input port when it
starts execution and writes the output data token to the buffer
of its port at the end of its execution.

Tasks that periodically generate data tokens but do not read
any data tokens are called sensing tasks. The authors of the
challenge further distinguish between status sensing tasks and
event sensing tasks. When an event occurs, the designated
event sensing task is triggered and produces relevant data
tokens. From our analysis point of view, status sensing tasks
are periodic and event sensing tasks are sporadic.

III. VERIFICATION CONSTRAINTS & ANALYSIS

Given a processing graph and a mapping of each task onto
hardware components, the following timing constraints must
be satisfied:
Maximum Reaction Time: For any event, it must be guaran-
teed that the first final data output caused by the event sensor
data capturing this event is produced within a predefined time
delay after the event occurs.
Maximum Data Age: For each final output data, the time
between the output and the sensor data token leading to that
output indirectly is bounded.
Maximum Time Stamp Difference: For each task, the dif-
ference of the time stamps among all its source data tokens
must be bounded from above by a predefined value.

The objective in the remainder of this paper is to verify
if the above constraints can be satisfied for a given set of

processing chains, sub-chains, task priorities, and mappings.
Moreover, we assume that the scheduling algorithms on each
processing unit is non-preemptive, i.e., once a job is scheduled
to be executed, that job is run until completion.

The provided analyses for maximum reaction time, maxi-
mum data age, and maximum time stamp difference are based
on our previous analyses described in [2]. The main idea is
to construct immediate forward and immediate backward
job chains that consist of the all the jobs (of tasks that are
involved in the data propagation of interest) along the direction
of data propagation. An immediate backward job chain is
constructed in an iterative manner by starting with a job of the
last task in a processing chain and then collecting the latest
job that produced the consumed data token. Analogously, an
immediate forward job chain starts from a job of the first task
in a processing chain and the iterative process of collecting
the earliest job (of an adjacent task in the processing chain),
that consumes the produced data token.

Whereas there are already analyses to validate the maximum
reaction time and the maximum data age constraint, presented
in Section III-A and Section III-B, for the maximum time
stamp difference, we need to reduce this problem to compu-
tation of maximum data age, presented in Section III-C.

A. Constraint Maximum Reaction Time
To compute the maximum reaction time according to [2],

we need to rely on worst-case response times Rji for each
task τji in the chain Ej . They can be computed beforehand
by appropriate analyses on the respective processing units.

Theorem 3 (Maximum Reaction Time [2]). The maximum
reaction time of chain Ej is no more than

MRT (Ej) := Tmax
j1 +RjKj

+

Kj−1∑
i=1

max{Rji , T
max
ji+1

+Rji ·σ}

(1)
where the predicate σ evaluates to 1 if either of the following
conditions are satisfied:
• τji has lower priority than τji+1

• τji and τji+1 are scheduled on different processing units
and 0 otherwise.

B. Constraint Maximum Data Age
As for the maximum reaction time, for the maximum data

age upper bounds on the worst-case response times for each
task in Ej have to be provided beforehand as well.

Theorem 4 (Maximum Data Age [2]). The maximum data
age of chain Ej is no more than

MDA(Ej) := RjKj
+

Kj−1∑
i=1

(Tmax
ji +Rji · σ) (2)

where the predicate σ evaluates to 1 if either of the following
conditions are satisfied:
• τji has lower priority than τji+1

• τji and τji+1 are scheduled on different processing units
and 0 otherwise.
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Figure 2: Two processing-chains merge in task Perception
Fusion. The time stamp difference between the two source
data tokens must be bounded from above.

C. Maximum Time Stamp Difference

The maximum time stamp difference constraint requires that
the maximal difference between any two time stamps of data
tokens that are consumed at a job of a merging task is bounded
from above. For instance, there are two processing sub-chains
E1 and E2 that merge at the Perception Fusion task as depicted
in Figure 2, i.e., E1 = Camera→ 2D Perception→ Perception
Fusion =: (τ1, τ2, τ3) and E2 = LiDAR → 3D Perception
→ Perception Fusion =: (τ4, τ5, τ3). The constraint requires
that the time stamp of the data tokens which are produced by
the Camera (τ1) and by the LIDAR (τ4) and used indirectly
when starting a job of Perception Fusion (τ3) have a bounded
difference.

We denote by Ej = τj1 → τj2 → . . . → τjKj
a sub-chain.

Let {Ej | j ∈ {1, . . . , P}} be a set of sub-chains that merge
into one identical task. For the analysis, we need to

1) find all jobs of τj1 that produce a data token, which is
consumed by a job of τjKj

and
2) bound the age of that data token at the time point at which

it is used by τjKj
.

If we provide an upper bound δj and a lower bound ρj on the
time stamp age for each sub-chain Ej , then the maximum
time stamp difference can be computed by

max
i 6=j∈{1,...,P}

(δj − ρi). (3)

The first objective 1) can be achieved by computing the
backward job chains of Ej , i.e., each job of τj1 that produces
a data token which is consumed of τjKj

is at the start of an
immediate backward job chain of Ej . In the following, let
~cj,k = (Jj1,k1

→ Jj2,k2
→ . . . → JjKj

,kKj
= JjKj

,k) denote
the k-th immediate backward job chain of Ej .

For the second objective 2), we consider the time stamp age
for ~cj,k, which is given by sjKj

,k−fj1,k1
. , i.e., the difference

between start of the last job and finish of the first job in the
chain. Since for job chains we have the property fji,ki

≤
sji+1,ki+1 , we derive a lower bound ρj for the time stamp

age by

sjKj
,k − fj1,k1

≥ fjKj−1,kKj−1
− sj2,k2

(4)

≥
Kj−1∑
i=2

(fji,ki
− sji,ki

) (5)

≥
Kj−2∑
i=2

Cmin
ji =: ρj . (6)

On the other hand, we can express an upper bound δj by
utilizing the maximum data age

sjKj
,k − fj1,k1 ≤ (fjKj

,k − Cmin
jKj

)− (sj1,k1 + Cmin
j1 ) (7)

= (fjKj
,k − sj1,k1

)− (Cmin
jKj

+ Cmin
j1 ) (8)

≤MDA(Ej)− (Cmin
jKj

+ Cmin
j1 ) =: δj . (9)

Since the upper and lower bound δj and ρj are valid for all jobs
chains, they can be used in the computation of the maximum
time stamp difference in Equation (3).

We make the conjecture, that there is even a tighter upper
bound given by

MDA(Ej)− (Cmax
jKj

+ Cmin
j1 ) =: δj . (10)

An artificial enlargement of the execution interval of the last
job JjKj

,k in the sequence ~cj,k to Cmax
jKj

leads to the inequality
sjKj

,k ≤ fjKj
,k−Cmax

jKj
which can be used instead of sjKj

,k ≤
fjKj

,k−Cmin
jKj

in (7). This artifical enlargement does not affect
value of sjKj

,k−fj1,k1 and can therefore safely be considered.
We plan to prove that tighter upper bound formally in future
work.
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Analysis of Time difference among Sensing Data in
Autonomous Driving Systems

Xu Jiang†, Yue Tang†, Dong Ji†
† Northeastern University, China

Abstract—The 2021 RTSS Industry challenge considers tim-
ing constraints in autonomous driving systems. One real-time
requirement is that the differences of timestamps among all
source data of an output must be upper-bounded by a pre-defined
value, to make sure that data from different sources are correctly
fused, e.g, object detection by using different sensing data. In this
paper, we formally describe the challenge system as well as the
requirements. In particular, we present timing analysis to bound
the maximum differences of timestamps among all sources for an
output. We show that an output may possibly be caused by two
different data from the same source, when fork-join structure
exists. This result suggests that data fusion after different long
pipelined processing procedure must be avoided to meet required
timing constraints.

I. INTRODUCTION

The 2021 RTSS Industry challenge considers timing con-
straints in autonomous driving systems. The objective of the
challenge is to study the possible scheduling strategies and
analysis techniques to guarantee the systems to meet all the
mentioned timing constraints.

An autonomous machine operates on its own to complete
tasks without human control or invertion. Autonomous ma-
chines have become increasing popular in various fields, such
as smart factories and autonomous driving, and undoubtedly
drawed much attention from both industry and research. In
autonomous machines, a control path usually covers multiple
steps that span over multiple software and hardware com-
ponents, and satisfying the end-to-end timing constraints of
control paths is a prerequisite for correct and safe systems.
Take autonomous vehicles as example, the completion of
obstacle avoidance depends on a chain of local tasks including
sensing, perception, planning and control, and the success of
obstacle avoidance requires that the task chain finishes before
predefined deadline. For performance evaluation, testing and
formal analysis are two major approaches. However, testing
cannot fully cover the runtime behavior space of a system and
thus does not provide hard real-time guarantee. This is not
acceptable to safe-critical autonomous machines, where timing
errors may lead to catastrophic consequences such as loss of
human life. As a consequence, formal modeling and analysis
must be performed to guarantee that the timing constraints
are always honored at run-time. Although there has been a
large amount of work targeting scheduling design and anslysis
in real-time community, most of them does not fully explore
critical factors in real applications, and thus can not be directly
applied to autonomous machines.

In this paper, we first model the challenge system as a cause-
effect graph, and then formally define the considered real-time
constraints. Two of the constraints are considered as the prob-
lems of bounding the maximum reaction time and maximum
data age, which have been formally defined and studied in
previous literature. To address the third problem, we extend
the concept of immediate backward job chains proposed in
[1] to immediate backward job graph, and formally define the
source differ of an immediate backward job graph. Then the
third problem in the challenge is defined as bounding the max-
imum source differ among all possible immediate backward
job graphs. Analysis techniques are developed to bound the
maximum source differ of immediate backward job graphs.
The results show that the source differ may significantly grow
with the propagation of data through different cause-effect
chains. In particular, the source differ could also be significant
even if the source data are produced by the same task. This
suggests that data fusion after different cause-effect chains
with long pipelines must be avoided to meet required timing
constraints.

II. PRELIMINARY

The challenge model is inspired by realistic software in au-
tonomous driving systems which have already been deployed
in reality. In the following, we first review the challenge model
and then present a formal characterization.

A. Challenge Model and Problems

The system is considered to be composed of several tasks,
which are executing on different processing units, e.g., GPU
and CPU. Each task is statically assigned onto a process-
ing unit, and is activated periodically according to a given
frequency. Each task reads input data tokens from one or
multiple input channels, and produces output data tokens into
one output channel. Tasks are connected with input/output
channels in between. Each channel can be considered as a
register, where the old data is over-written when the new data
arrives. When activated, a task reads data from all its input
channels and produces output data into its output channel. In
particular, some components only produce output data tokens
(but do not read). Such tasks are called sensing tasks, which
are classified into two types: status sensing tasks generating
status data tokens to report status, and event sensing tasks
detecting events to generate event data tokens. When an
event happens, all the output data token produced by the
corresponding sensing task after that will capture this event.
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When a task reads several input data tokens (from different
input ports) and produces an output data token, the input data
token is called the cause of the output data token. The original
data token indirectly being the cause of a data token is the
source of the data token. Each sensor data token is associated
with a timestamp labeled by the time when it is produced.

Given such a system, the real-time problems of the chal-
lenge are summarized as follows:
• For each task, the difference of the timestamps among all

its source data tokens must be upper-bounded by a given
value.

• For any event, it must be guaranteed that the first final
data output caused by the event sensor data capturing this
event is produced within a pre-defined time delay after
the event occurs.

• For a final output data token produced at time t, any
source data token of it must be produced no earlier than
a pre-defined value before t.

B. Cause-Effect Graph

Inspired by the non-blocking executing scenario and the
pipeline of tasks, the system can be modeled as a directed
acyclic graph (DAG), called cause-effect graph, denoted by
G = 〈V,E〉, where V is the set of vertices and E the set
of edges. A vertex v in V corresponds to a task τi. An edge
(u, v) ∈ E corresponds to the input channel/output channel
of v/u and represents the data dependency between u and v.
We call u a predecessor of v, and v a successor of u. A
cause-effect chain is a path in G, i.e., a sequence of tasks
π = {v1, v2, · · · , vp} where vj is a predecessor of vj+1 for
each pair of consecutive elements vj and vj+1 in π. We use
Iπk to denote the index of the kth task in the cause-effect chain
π. A task with multiple incoming edges is called a fusion task.

A complete path in G is a path in G that starts with a
vertex with no predecessors and ends with a vertex with no
successors. A task τi is characterized by a tuple (Wi, Bi, Ti).
Wi and Bi denote the worst-case execution time (WCET) and
best-case execution time (BCET) of τi, respectively, which
are known in advance. Ti is the period of τi. In particular, we
assume Wi = Bi = 0 if τi has no predecessors, i.e., a source
task in the graph.

An example of the system is shown in Fig. 1. The number
below each vertex denotes period of the corresponding task.

Fig. 1. An example of the system.

C. Run-Time Behavior

Each task τi is statically assigned on a processing unit.
During run-time, τi releases an infinite sequence of jobs. The
period Ti of τi is the time difference between the release times
of two successive jobs of τi. Without loss of generality, we
assume the system starts at time 0, and use Jki to denote the
kth job of task τi. Let rki and fki denote the release time and
finish time of Jki . All tasks assigned on the same processing
unit are scheduled together by a scheduler. Both migration and
preemption are forbidden. In this paper, we do not specify
the scheduler adopted on each processing unit. A job reads
the current data in the register of each input channel when
it starts execution, and writes the output data token to its
output channel at the end of its execution, i.e., the implicit
communication in automotive systems. In particular, if Jki is a
job of a task τi without any predecessor, the output data token
produced by this job is assumed to be written into its output
channel at its release time rki .

The worst-case response time (WCRT) of τi is the longest
time interval between the release and finishing time of all its
jobs, denoted by Ri. Note that, Ri is decided by the scheduler
and other tasks scheduled together with τi, and can be upper
bounded by some analysis techniques presented in previous
literature [2]–[4]. In this paper, we do not consider the impact
of scheduler to the challenge problems. For the rest of this
paper, we assume that for every task τi in G, its WCRT is no
more than Ti.

D. Job Chain and Job Graph

A job chain of a cause-effect chain π in G is a sequence
of jobs with data dependency, i.e., a job reads the data token
generated by its predecessor in the job chain for each pair of
successive jobs. In particular, several job chains can merged
into a job graph when they contain the same job.

Definition 1 (immediate forward job chain). An immediate
forward job chain that starts from the kth job of the first task
τIπ1 (recall that Iπ1 is the index of the first task in π) in the
cause-effect chain π, denoted as −→πk, is defined iteratively from
the job JIπ1 ,k. Let rkIπ1 and fkIπ1 denote the release time and the
finish time of JkIπ1 respectively. For each i = 2, · · · , |π|, the
ith job in the −→πk is the first job of τIπi that starts its execution
no earlier than fkIπi−1

, whose release time and finish time are
denoted by rkIπi and fkIπi

. The forward time of the immediate
forward job chain −→πk is denoted by len(−→πk) = fkIπ|π|

− rkIπ1 .

The worst-case forward time (WCFT) Fπ of a cause-
effect chain π is the maximum forward time of all possible
immediate forward job chains of π:

Fπ = max
∀k

len(−→πk).

Definition 2 (immediate backward job chain). An immediate
backward job chain that ends at the kth job of the last task
τIπ|π| (recall that Iπ|π| is the index of the last task in π) in
the cause-effect chain π, denoted as ←−πk, is defined iteratively
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from the job JIπ|π|,k. Let rkIπ|π| and fkIπ|π|
denote the release

time and the finish time of JkIπ|π| respectively. For each i =

1, · · · , |π| − 1, the ith job in the ←−πk is the last job of τIπi that
finishes its execution no later than the start time of JkIπi , whose
release time and finish time are denoted by rkIπi and fkIπi . The
backward time of the immediate back job chain ←−πk is denoted
by len(←−πk) = fkIπ|π|

− rkIπ1 . In particular, we let len(←−πk) = 0 if

there is no immediate backward job chain ending at the kth

job of the last task τIπ|π| .

The worst-case backward time (WCBT) Bπ of a cause-
effect chain π is the maximum backward time of all possible
immediate backward job chains of π:

Bπ = max
∀k

len(←−πk).

Since the last problem in the challenge refers to multiple
cause-effect chains, we extend the concept of the immediate
backward job chains to the immediate backward job graph.
Let Π denote the set of cause-effect chains that end at the
same task. When considering multiple cause-effect chains, we
define the immediate backward job graph as follows.

Definition 3 (immediate backward job graph). The immediate
backward job graph that ends at the kth job of the common
last task of all cause-effect chains in Π, denoted as

←−
Πk, is the

joint graph by the immediate backward job chain ←−πk of each
cause-effect chain π in Π.

Let SkΠ denote the set of all jobs of source tasks in
←−
Πk, and

PkΠ be the set of timestamps of jobs in SkΠ, the source differ
of
←−
Πk is defined as OΠk = max∀si,sj∈SkΠ |si − sj |.
The worst-case source differ (WCSD) DΠ of a set of cause-

effect chains Π is the maximum source differ of all possible
immediate backward job graph of Π:

DΠ = max
∀k
OΠk .

E. Problem Definitions

To address the challenge problem, we need to analyze the
worst-case time interval from cause to effect, i.e., the time
interval from the moment where the first task in a cause-effect
chain starts executing until time point when the last task in
a cause-effect chain finishes. Two latency semantics are of
specific interest: the maximum reaction time and maximum
data age as introduced by Feiertag et al. [5]. The maximum
reaction time refers to the first response of the system to
an external cause, e.g., a button press or a value change of
a register. Thus, the time interval between the worst-case
occurrence of a cause and the first corresponding output of
the system needs to be analyzed, which corresponds to the
first problem in the challenge. The WCFT corresponds to the
maximum reaction time.

The maximum data age is the time interval between the
moment a cause task produces a source data token until the
last time point when the effect task produces an output data

token caused by the source data token, which corresponds to
the second problem in the challenge. The WCBT of a cause-
effect chain corresponds to the maximum data age.

The third problem in the challenge refers to the time
differences among timestamps of all source jobs for an output
data token, thus corresponding to the WCSD of a set of a
cause-effect chains ending at the same task.

III. ANALYSIS

Analysis techniques for bounding the maximum data age
and reaction time are proposed in several previous literature,
e.g., [6]–[10]. So in this paper, we focus on the third problem
and then investigate the influence of the design to these
different timing constraints.

We first consider a set Π of cause-effect chains comprising
two cause-effect chains λ and π ending at the same task. Then
it is satisfied:

Lemma 1. Let ∆U
λ =

∑|λ|−1
i=1 (TIλi +RIλi ) +RIλ|λ|

and ∆L
λ =∑|λ|

i=1BIλi , the WCSD of Π is upper-bounded by

DΠ ≤ max{∆U
λ −∆L

π ,∆
U
π −∆L

λ}

Proof. Considering an arbitrary job JIπ|π|,k of the last task of
both λ and π, we construct the immediate backward job graph←−
Πk of Π. By definition, the (|λ| − 1)th job in the graph on
λ is the last job of τIλ|λ|−1

that finishes its execution no later
than the start time of JIπ|π|,k, so we know:

rλIλ|λ|
− rλIλ|λ|−1

≤ TIλ|λ|−1
+RIλ|λ|−1

and
rλIλ|λ|

− rλIλ|λ|−1
≥ BIλ|λ|−1

Similarly, for each i = 1, 2, · · · , |λ| − 1, we have:

rλIλi
− rλIλi−1

≤ TIλi−1
+RIλi−1

and

rλIλi
− rλIλi−1

≥ BIλi−1

The it must be satisfied:

rλIλ|λ|
− rλIλ1 ≤

|λ|−1∑
i=1

(TIλi +RIλi )

and

rλIλ|λ|
− rλIλ1 ≥

|λ|−1∑
i=1

BIλi

Since BIλ|λ| ≤ f
λ
Iλ|λ|
− rλ

Iλ|λ|
≤ RIλ|λ| , we have:

len(
←−
λk) ≤

|λ|−1∑
i=1

(TIλi +RIλi ) +RIλ|λ|
= ∆U

λ

and

3



len(
←−
λk) ≥

|λ|∑
i=1

BIλi = ∆L
λ

Similarly, we know

len(←−πk) ≤ ∆U
π and len(←−πk) ≥ ∆L

π

Then it is satisfied:

OΠk = max
∀si,sj∈SkΠ

|si − sj | ≤ max{∆U
λ −∆L

π ,∆
U
π −∆L

λ}

Since JIπ|π|,k is an arbitrary job, the lemma is proved.

Since the time differ does not propagate on the same job
chain, when computing the WCSD of two chains, we only
need to construct sub-graph of these two chains until their last
joint point. It can be observed that, the source differ could
grow with the propagation of data tokens through different
cause-effect chains.

In particular, if λ and π share the same source task τk, the
following lemma can be given.

Lemma 2. The WCSD of Π is upper-bounded by

DΠ ≤ b
max{∆U

λ −∆L
π ,∆

U
π −∆L

λ}
Tk

cTk

Proof. Since λ and π share the same source task τk, the time
difference between the release times of two jobs must be an
integer multiple of its period.

It can be observed from Lemma 2, the source differ could
also be significant even if the source data tokens are produced
by the same task.

At last, given a task and all its source tasks being con-
sidered, let Π denote the set of all cause-effect chains that
start from one source task and end at the considered task, we
enumerate each combination of two cause-effect chains πi and
πj in Π and put them into the set Π

′
and then compute the

upper bound of DΠ′ according to Lemma 1 or Lemma 2. The
source differ of Π is upper-bounded by DΠ ≤ max∀Π′ DΠ′ .

IV. CONCLUSION

In this paper, we first formally model the challenge system
as a cause-effect graph, and then formally define the problems.
Two problems correspond to bounding the maximum reaction
time and maximum data age which have been formally defined
and studied in previous literature. To address the third problem,
we extend the concept of immediate backward job chains pro-
posed in [1] to immediate backward job graph, and formally
define the source differ of an immediate backward job graph.
Then the third problem in the challenge is defined as bounding
the maximum source differ among all possible immediate
backward job graphs. We present analysis techniques to bound
the maximum source differ of immediate backward job graphs.
The results show that the source differ may significantly grow
with the propagation of data through different cause-effect
chains. In particular, the source differ could also be significant

even if the source data are produced by the same task. This
suggests that data fusion after different cause-effect chains
with long pipelines must be avoided to meet required timing
constraints.
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Abstract—Given the problem proposed in RTSS 2021 Industry
Challenge, we formally define a system model where dependent
tasks are organized in a direct acyclic graph structure and
communicate with an unblocking manner. For such a system,
we present solutions to estimate three time latencies: maximum
reaction time, maximum data age, and maximum difference
among the timestamps of ”source” sensor data. One major
contribution made in this paper is that the clock shifts among
different processing units have been taken into account during
the estimations without a mandatory schedule simulation process.
By doing this, fairly tight upper bounds can be calculated for all
three latencies.

Index Terms—distributed embedded system, real-time schedul-
ing, heterogenous processing units

I. INTRODUCTION

Based on the problem posted in RTSS 2021 Industry Chal-
lenge, we are considering a system with a set of data dependent
tasks, where data dependencies among different tasks can be
modeled as a direct acyclic graph (DAG) structure. Tasks
communicate through buffers. More specifically, they read and
write data from/to the buffer in a non-blocking manner. Each
read or write is constrained to happen at the start or the
complete time of a released task instance respectively.

According to the posted problem, the lengths of three
time intervals are required to be analyzed. One is the
maximum latency between the occurrence of an event and
the time when the system gives the first control output that
corresponds to the event. It is frequently referred to as the
”maximum reaction time” [1]–[3] of a system. Another time
interval is the maximum latency between a captured sensor
data and the final output directly caused by the sensor data.
In some papers, it is called ”maximum data age” [1], [2].
It is worth noting that if under-sampling exists in any stage
of the whole data processing progress, not every sensor data
can be finally propagated to the output. The under-sampling
could happen when a reader has lower reading frequency then
its corresponding writer task. In which case, some of the data
written to the buffer will not be read until the overwritten
happens. The effect of under-sampling and over-sampling
have been discussed in [3]. All ”source” sensor data that do
affect the control output are characterized with timestamps that

This work was supported by the Fundamental Research Funds for the
Central Universities (2572019BH04).

correspond to the time when they are captured sensing tasks.
The third interval needs calculating is the time difference
between the timestamps of ”source” sensor data.

In recent work [1]–[3], the timing analysis for loosely
dependent tasks have already received some attention. In
[3], a way to estimate the maximum reaction latency has
been proposed for a cause-effect chain with non-blocking
communication manner. In [1], [2], both maximum reaction
time and maximum data age have been analyzed for a cause-
effect chain. A major contribution made in [1] is that the
clock shifts between any two different processing units have
been considered carefully during the latency estimations. Their
approach in [1] has greatly lowered the upper bounds of both
maximum reaction time and maximum data age comparing
with their previous work [2]. Although they have focused
on a chain dependent structure, their work can be easily
extended to support more complex structures, e.g. the DAG
structure. However, several reasons hinders applying extended
versions of [1]–[3] to the proposed problem. In [3] only DBP
protocol is considered, which assumes that a reader task can
read without waiting for the completion of its writer task.
Also, tasks are required to start at the same time in [3]. It
is not common to have this constraint satisfied in distributed
embedded systems, since there is no easy way for different
processing units to keep synchronous. In [2], the scheduling
algorithm is limited to a fixed priority preemptive policy, but
the proposed problem requires a non-preemptive scheduling
policy. In addition, [2] computes the latencies by simulating
the schedule, which requires a fixed execution time for each
task. This requirement is a drawback when dealing with tasks
with variable execution time. The system model in [2] aligns
with what has been described in the proposed problem, but
it assumes an arbitrary release time for all the jobs. This is
not true for tasks that are strictly periodic, and thus causes
pessimism in the estimations. All of these approaches have
not provided estimation for the time difference between the
timestamps of ”source” sensor data. It is worth noting that
subject to the space limitation, only several most related work
have been discussed here. These publications have also shed
light on our timing analysis.

In this paper, we present methods to tightly estimate the
upper bounds of all three mentioned time latencies for a
loosely dependent task set structured as a DAG. We take into



account of the clock shifts among different processing units,
and give a general solution for a task system where each task
has its own phase. Our solution also avoids using schedule
simulations to do the estimations, which allows variations in
the length of the execution time for each task.

The remainder of this paper is organized as bellow. In
Section II, we formally define the system model. In Section III,
we describe how the timing analysis is conducted. In Section
IV, we conclude the with a summary.

II. SYSTEM MODEL

Based on the problem posted in RTSS 2021 Industry
Challenge, we formally describe the system model and nec-
essary notions as follows. We assume a system with mul-
tiple independent processing unites. A set of periodic tasks
Γ = {τ1, ...τi, ...τn} are scheduled in the system. A job
is an instance of a task. The nth job of τi is denoted as
Ji,n. The release time, starting time and finishing time of
Ji,n are denoted as ai,n, si,n and fi,n respectively. Each
task is mapped to a processing unit before runtime. On each
processing unit, one or multiple tasks are executed. If multiple
tasks are mapped to the same processing unit, one of the non-
preemptive policy is used to schedule the tasks. Each task τi
is characterized by the tuple (Cmaxi , Cmini , Ti, φi, Pi, ECUi).
The worst case execution time (WCET) and best case exe-
cution time (BCET) of τi are denoted as Cmaxi and Cmini ,
i.e. the longest and shortest time for τi to finish its execution
without any preemption or interrupt on its assigned processing
unit. The relationship ∞ > Cmaxi ≥ Cmini > 0 holds. In the
case that Cmaxi = Cmini , τi has a fixed execution time on its
assigned processing unit. The release period of τi is denoted
as Ti. The processing unit that τi is assigned to is ECUi. φi
is the phasing of τi, meaning the time when τi releases its
first job. In this article we limit ourselves to only consider the
condition that each task is assigned a fixed priority. τi’s priority
is denoted as an integer Pi, where a higher value indicates a
higher priority.

The worst case response time (WCRT) of τi, i.e. the
longest time between arrival and finishing time of any job
of τi, is denoted as Ri. For any τi that is assigned to a
dedicated processing unit, it is obvious that Ri = Cmaxi .
If multiple tasks share the same processing unit, a method
to calculate their WCRTs and verify their schedulability is
needed. Under fixed-priority non-preemptive scheduling, one
available method supporting tasks with arbitrary deadlines can
be found in [4]. In this case, we assume Ri is a known value.
Bi is used to denote the maximum blocking time of τi, i.e.
the maximum time interval from the release to the starting of
any job of τi. It is obvious that the equation Ri = Bi+Cmaxi

holds. So, the value of Bi can be easily obtained when Ri
and Cmaxi are known. Given this knowledge, we assume Bi
is also a known value.

The data dependencies among all the tasks in Γ is declared
by a DAG structure. Each vertex of the DAG corresponds to a
task. A directed edge between task τi to τj represents the fact
that τi produces input data tokens for τj . In this paper, such

a relationship is also described as τi → τj in text. Any path
in the DAG with at least two tasks with interconnect edges is
called a cause-effect chain [1]–[3]. According to the problem
statement, one or multiple source vertexes are allowed in the
DAG, but there is only one sink vertex. Each source vertex
represents a ”sensing task” and the sink vertex corresponds to
the task that produces the final control output.

III. TIMING ANALYSIS

In this section we describe how the time latencies are
bounded for the defined task system. Limited by the space,
several concepts defined in [1], [2] are used directly without
detailed explanation.

A. Maximum Reaction Time

First, we analysis the maximum reaction time of the system,
i.e. the latency between the occurrence of an event and the
time when the sink task gives the first control output that
corresponds to the event. An integer arithmetic theorem that
will be used in this section is stated as Theorem III.1.

Theorem III.1. (Theorem 3.23 in [5]) Let a and b be integers
and gcd(a, b) be the greatest common divisor of a and b.
The equation ax + by = c has no integral solutions if
gcd(a, b) - c. If gcd(a, b) | c, then there are infinitely many
integral solutions. Moreover, if x = x0, y = y0 is a particular
solution of the equation, then all solutions are given by
x = x0 + b

gcd(a,b) · n, y = y0 − a
gcd(a,b) · n, where n is an

integer.

Then, we prove several lemmas which will help the analysis
later.
Lemma III.2. Let Aax→ay denote the lower bound for the
distance between the release time of a job of τx and the release
time of the nearest job of τy that is released after it. Then,

Aax→ay

=

{
gcd(Tx, Ty), if gcd(Tx, Ty) | (φy − φx);
(φy − φx) + d φx−φy

gcd(Tx,Ty)
e · gcd(Tx, Ty), otherwise.

Proof. Assume that job Jy,n is released after job Jx,m where
m,n ∈ N+. Let d be the distance between release times of
Jx,m and Jy,n. Then, we have

d = (n · Ty + φy)− (m · Tx + φx)

⇒n · Ty −m · Tx = d− (φy − φx)

According to Theorem III.1, d − (φy − φx) must be a value
that equals k · gcd(Tx, Ty), where k ∈ N. so

d = (φy − φx) + k · gcd(Tx, Ty)

Because d > 0, if gcd(Tx, Ty) - (φy − φx), we have
k ≥ d φx−φy

gcd(Tx,Ty)e. We can find the smallest value of d ∈ N+

by letting k = d φx−φy
gcd(Tx,Ty)e. When gcd(Tx, Ty) | (φy − φx),

k >
φx−φy

gcd(Tx,Ty) should hold. Then, the smallest d > 0 can be

reached by letting k =
φx−φy

gcd(Tx,Ty) + 1.

Lemma III.3. Let Ωay→sx denote the lower bound for the
distance between the latest starting time of a job of τx and



the release time of the nearest job of τy that is released before
it. Then,

Ωay→sx

=

{
gcd(Tx, Ty), if gcd(Tx, Ty) | (φx + Bx − φy);
(φx + Bx − φy) + d−φx−Bx+φy

gcd(Tx,Ty)
e · gcd(Tx, Ty), otherwise.

Proof. Assume job Jy,n is released before the latest starting
time of job Jx,m where m,n ∈ N+. Let d be the distance
between the latest starting time of Jx,m and the release time
of Jy,n. Because sx,m ≤ ax,m +Bx, we have

d = (m · Tx + φx +Bx)− (n · Ty + φy)

⇒m · Tx − n · Ty = d− (φx +Bx − φy)

According to Theorem III.1, d − (φx + Bx − φy) must be a
value that equals k · gcd(Tx, Ty), where k ∈ N. so

d = (φx +Bx − φy) + k · gcd(Tx, Ty)

The following proof is similar as the proof of Lemma III.2.
Because d > 0, if gcd(Tx, Ty) - (φx + Bx − φy), we have
k ≥ d−φx−Bx+φy

gcd(Tx,Ty) e. We can find the smallest value of d ∈ N+

by letting k = d−φx−Bx+φy
gcd(Tx,Ty) e. When gcd(Tx, Ty) | (φx+Bx−

φy), k > −φx−Bx+φy
gcd(Tx,Ty) should hold. Then, the smallest d > 0

can be reached by letting k =
−φx−Bx+φy
gcd(Tx,Ty) + 1.

Lemma III.4. Let Θay→fx denote the lower bound for the
distance between the latest finishing time of a job of τx and
the release time of the nearest job of τy that is released before
it. Then,

Θay→fx

=

{
gcd(Tx, Ty), if gcd(Tx, Ty) | (φx + Rx − φy);
(φx + Rx − φy) + d−φx−Rx+φy

gcd(Tx,Ty)
e · gcd(Tx, Ty), otherwise.

Proof. Assume that job Jy,n is released before the latest
finishing time of job Jx,m where m,n ∈ N+. Let d be the
distance between the latest finishing time of Jx,m and the
release time of Jy,n. Because fx,m ≤ ax,m +Rx, we have

d = (m · Tx + φx +Rx)− (n · Ty + φy)

⇒m · Tx − n · Ty = d− (φx +Rx − φy)

According to Theorem III.1, d − (φx + Rx − φy) must be a
value that equals k · gcd(Tx, Ty), where k ∈ N. so

d = (φx +Rx − φy) + k · gcd(Tx, Ty)

The following proof is similar as the proofs of Lemma III.2
and Lemma III.3. Because d > 0, if gcd(Tx, Ty) - (φx +

Rx − φy), we have k ≥ d−φx−Rx+φy
gcd(Tx,Ty) e. We can find the

smallest value of d ∈ N+ by letting k = d−φx−Rx+φy
gcd(Tx,Ty) e.

When gcd(Tx, Ty) | (φx +Rx−φy), k > −φx−Rx+φy
gcd(Tx,Ty) should

hold. Then, the smallest d > 0 can be reached by letting
k =

−φx−Rx+φy
gcd(Tx,Ty) + 1.

Now we consider the simplest case that there are only two
tasks in a cause-effect chain.

Lemma III.5. In a cause-effect chain τi → τj , let Ji,p and
Jj,q be the pth and qth job of τi and τj respectively. If Jj,q

is the first job of τj that executes after the finishing time
of Ji,p. Let ∆ai→aj denote the upper bound of aj,q − ai,p.
The following condition holds for any non-preemptive fixed-
priority schedule

∆ai→aj

=

 Tj +Bi − Ωaj→si , ECUi = ECUj and Pj > Pi;
Tj −Aaj→ai , ECUi = ECUj and Pj < Pi;
Tj +Ri −Θaj→fi , otherwise, i.e. ECUi 6= ECUj .

Proof. When τi and τj execute on the same ECU, two
scenarios need to be considered:

1) Pj > Pi, i.e. τi has a lower priority than τj .
2) Pj < Pi, i.e. τi has a higher priority than τj .
If Pj > Pi, there must be aj,q−1 < si,p, meaning Jj,q−1

arrives no later than the starting time of Ji,p. Otherwise Jj,q−1

will be blocked until the finishing time of Ji,p or arrive after
the finishing time of Ji,p, which contradicts the assumption.
Thus aj,q−1 < ai,p + Bi. According to Lemma III.3, ai,p +
Bi − aj,q−1 ≥ Ωaj→si . So aj,q = aj,q−1 + Tj ≤ ai,p + Tj +
Bi − Ωaj→si .

If Pj < Pi, there must be aj,q−1 < ai,p. Otherwise Jj,q−1

will start its execution after the finishing time of Ji,p and be
the first job of τj that executes after the finishing time of Ji,p.
According to Lemma III.2, ai,p − aj,q−1 ≥ Aaj→ai . Thus
aj,q = aj,q−1 + Tj ≤ ai,p + Tj −Aaj→ai .

When τi and τj are assigned to different ECUs, there should
be aj,q−1 < fi,p. It follows aj,q−1 < ai,p + Ri According to
Lemma III.4, ai,p + Ri − aj,q−1 ≥ Θaj→fi . Then, we have
aj,q = aj,q−1 + Tj ≤ ai,p + Tj +Ri −Θaj→fi .

Let Ej denote a cause-effect chain and Kj denote the
number of periodic tasks in Ej . We denote ej(i) as the
function that returns the index of the ith task in Ej . Then, we
have Ej = τej(1) → τej(i) → ... → τej(Kj). Additionally, we
use Jej(i),fj(i) and Jej(i),bj(i) to denote a job in the immediate
forward and backward job chain respectively. Note that, the
definition for immediate forward and backward job chains can
be found in [2]. The function fj(i) and bj(i) return indexes
denoting that Jej(i),fj(i) and Jej(i),bj(i) are the fj(i)

th and
bj(i)

th job of τej(i). Now we can estimate the maximum
reaction time of a cause-effect chain.

Theorem III.6. The maximum reaction time of a cause-effect
chain Ej is upper bounded by

Tej(Kj) +Rej(Kj) +

Kj−1∑
i=1

∆aej(i)→aej(i+1)

The proof of Theorem III.6 is omitted here, because it is
the same as what has been elaborated in Theorem 5.3 and 5.4
in [2].

With Theorem III.6, the reaction time of all the cause-effect
chains in a DAG that start from a event sensing task and end
to the control output task can be upper bounded. Therefore,
the maximum reaction time of the whole DAG task system is
bounded.



B. Maximum Data Age

Then, we analyze the age of data for each sensing task in Γ,
i.e. the interval between the time when a raw data is captured
by a sensing task and when the final output directly caused
by the data is produced by the sink task.

Lemma III.7. In a cause-effect chain τi → τj , let Ji,p and
Jj,q be the pth and qth job of τi and τj respectively. If Ji,p
is the last job of τi that executes before the starting time of
Jj,q . Let Λai→aj denote the upper bound of aj,q − ai,p. Then,
for any non-preemptive fixed-priority schedule, the following
condition holds:

Λai→aj

=

 Ti +Bi − Ωaj→si , ECUi = ECUj and Pj > Pi;
Ti −Aaj→ai , ECUi = ECUj and Pj < Pi;
Ti +Ri −Θaj→fi , otherwise, i.e. ECUi 6= ECUj .

Proof. When τi and τj are assigned to the same ECU, two
scenarios need to be considered:

1) Pj > Pi, i.e. τi has a lower priority than τj .
2) Pj < Pi, i.e. τi has a higher priority than τj .
If Pj > Pi, because Ji,p+1 finishes after the starting time

of Jj,q , it must be aj,q ≤ si,p+1. Hence, aj,q ≤ ai,p+1 + Bi.
According to Lemma III.3, ai,p+1 + Bi − aj,q ≥ Ωaj→si . So
aj,q ≤ ai,p+1 +Bi − Ωaj→si = ai,p + Ti +Bi − Ωaj→si .

Similarly, if Pj < Pi, there must be aj,q < ai,p+1.
Otherwise Jj,q will start its execution after the finishing time
of Ji,p+1. According to Lemma III.2, ai,p+1−aj,q ≥ Aaj→ai .
Thus aj,q ≤ ai,p+1 −Aaj→ai = ai,p + Ti −Aaj→ai .

When τi and τj are assigned to different ECUs, there should
be aj,q < fi,p+1. It follows aj,q < ai,p+1 + Ri According to
Lemma III.4, ai,p+1 + Ri − aj,q ≥ Θaj→fi . Then, we have
aj,q ≤ ai,p+1 +Ri−Θaj→fi = ai,p +Ti +Ri−Θaj→fi .

Now the upper bound of the maximum data age for a cause-
effect chain can be obtained by Theorem III.8.

Theorem III.8. The maximum data age of a cause-effect chain
Ej is upper bounded by

Rej(Kj) +

Kj−1∑
i=1

Λaej(i)→aej(i+1)

The proof for Theorem III.8 is also omitted, because it is
the same as what has been elaborated in the proofs of Theorem
5.3 and 5.4 in [2].

With Theorem III.8, the data age of all the cause-effect
chains that start from a sensing task and end to the control
output task can be upper bounded.

C. Maximum Difference of Data Age

Finally, we analyze the time difference between the times-
tamps of ”source” sensor data.

Lemma III.9. In a cause-effect chain τi → τj , let Ji,p and
Jj,q be the pth and qth job of τi and τj respectively. If Ji,p
is the last job of τi that executes before the starting time of

Jj,q . Then, for any non-preemptive fixed-priority schedule, the
following inequality holds:

sj,q − ai,p

≥
{

min{Aai→aj , ai,p + Cmini }, ECUi = ECUj and Pj > Pi;
ai,p + Cmini , otherwise.

Proof. When τi and τj are assigned to the same ECU, two
scenarios need to be considered:

1) Pj > Pi, i.e. τi has a lower priority than τj .
2) Pj < Pi, i.e. τi has a higher priority than τj .
If Pj > Pi, it must be that aj,q > si,p, otherwise τj will

start and finish before τi. Then we have aj,q > ai,p. According
to Lemma III.2, aj,q−ai,p ≥ Aai→aj . Because sj,q ≥ aj,q , we
have sj,q − ai,p ≥ Aai→aj . Meanwhile, by definition sj,q ≥
fi,p should hold. It follows that sj,q ≥ ai,p + Cmini . Thus,
sj,q − ai,p ≥ min{Aai→aj , ai,p + Cmini }

If Pj < Pi, sj,q ≥ fi,p ≥ ai,p + Cmini . Similarly, when τi
and τj are assigned to different ECUs, sj,q ≥ ai,p + Cmini

holds.

Lemma III.10. In a cause-effect chain τi → τj , let Ji,p and
Jj,q be the pth and qth job of τi and τj respectively. If Ji,p
is the last job of τi that executes before the starting time of
Jj,q . Then, for any non-preemptive fixed-priority schedule, the
following inequality holds:

sj,q − si,p ≥ Cmini

Proof. The minimum time interval between sj,q and si,p is
obtained when Ji,p executes for its BCET (Cmini ) and Jj,q
starts immediately upon the completion of Ji,p.

Theorem III.11. The minimum data age of a cause-effect
chain Ej is lower bounded by

min{Aaej(1)→aej(2) , C
min
ej(1)

}+
∑Kj
i=2 C

min
ej(i)

, ECUej(1) = ECUej(2)

and Pej(2) > Pej(1);∑Kj
i=1 C

min
ej(i)

, otherwise.

Proof. Without lose of generality, we assume the release time
of Jej(1),bj(1) is 0, i.e. aej(1),bj(1) = 0. By definition of a
valid immediate backward job chain [2], the length of the
chain equals:

(sej(2),bj(2) − aej(1),bj(1)) +

Kj−1∑
i=2

(sej(i+1),bj(i+1) − sej(i),bj(i))

+ (fej(Kj),bj(Kj) − sej(Kj),bj(Kj))

≥(sej(2),bj(2) − aej(1),bj(1)) +

Kj−1∑
i=2

(sej(i+1),bj(i+1) − sej(i),bj(i))

+ C
min
ej(Kj)

≥(sej(2),bj(2) − aej(1),bj(1)) +

Kj∑
i=2

C
min
ej(i)

(by Lemma III.10)

≥


min{Aaej(1)→aej(2) , C

min
ej(1)

}+
∑Kj
i=2 C

min
ej(i)

, ECUej(1) = ECUej(2)

and Pej(2) > Pej(1);∑Kj
i=1 C

min
ej(i)

, otherwise.

(by Lemma III.9)



For a task set structured as a DAG, when Theorem III.11
is given, the data age of all the cause-effect chains that start
from a sensing task and end to the control output task can be
lower bounded.

τ1

τ2

τ3

τ4

τ5

τ6

τ7 τ8 τ9 τ10

τ11

τ12

Fig. 1. An example of a DAG task set

Let Γr = {τr(1), ...τr(i), ...τr(m)} be the set of sensing tasks,
i.e. the source vertexes in the DAG, where r(i) is a function
that returns the index of the ith task in Γr. Assume that two
cause-effect chains Ej and El follow the constraint: both of
them end with the control output task; τej(1) = τr(p), τel(1) =
τr(q) and p 6= q. One safe upper bound of the time difference
between the timestamps of two ”source” sensor data read in by
τr(p) and τr(q) can be obtained by subtracting minimum data
age of Ej (or El) from maximum data age of El (or Ej). But
this approach is pessimistic in a way that it does not take into
account the situation that Ej and El have crosspoint. In Figure
1, we provide an example task set. The dependent structure
in this example is copied from the proposed problem. There
are five cause-effect chains that start from a sensing task and
end to the control output task: E1 = τ1 → τ7 → τ8 → τ9 →
τ10 → τ12; E2 = τ2 → τ5 → τ7 → τ8 → τ9 → τ10 → τ12;
E3 = τ3 → τ6 → τ7 → τ8 → τ9 → τ10 → τ12; E4 =
τ3 → τ11 → τ10 → τ12; E5 = τ4 → τ11 → τ10 → τ12. Take
E1 and E2 for instance. These two chains converge from τ7.
Hance, one released job of τ7 reads in the output of τ1 and τ5
simultaneously. From then on, it takes the same time for the
source data tokens that read in by τ1 and τ2 to reach the output.
Hance, the difference of timestamps between the source data
tokens read in by τ1 and τ2 is determined by the parts of
E1 and E2 that do not overlap. Given this fact, we propose
Algorithm 1 to calculate the maximum time difference among
the timestamps of ”source” sensor data.

IV. SUMMARY

In this paper, we give a solution to estimate maximum
reaction time, maximum data age, and maximum difference
among the timestamps of ”source” sensor data for a distributed
embedded task system. We consider carefully about the effect
that could be caused by clock shifts among different process-
ing units and form a system model that allows each task to
have its own first release time. Some other system models
with tighter constraints can be seen as special cases under
our assumption and adopt our solution directly. Examples are

Algorithm 1 The maximum time difference
Input: Γ, Γr
Output: maximum time difference among the timestamps of

”source” sensor data DIFF
1: Γcross ← all the tasks in Γ that have indegree greater than

1 as vertexes in the DAG structure
2: DIFF ← 0, Γtemp ← ∅
3: for each task τm in Γcross do
4: for each task τn in Γr do
5: if exist a cause-effect chain Ex starts from τn and

ends to τm then
6: Γtemp ← Γtemp

⋃
{τn}

7: MAXn ← the maximum data age of Ex by
Theorem III.8

8: MINn ← the minimum data age of Ex by Theo-
rem III.11

9: end if
10: end for
11: for each task τn in Γtemp do
12: Y ← arg min{MINm}

τm∈Γtemp
∧
m6=n

13: if DIFF < MAXn − Y then
14: DIFF ←MAXn − Y
15: end if
16: end for
17: Γtemp ← ∅
18: end for

systems that restrict all the tasks to release their first job
synchronously and systems that globally asynchronized and
locally synchronized. Our solution also avoids using schedule
simulations to do the estimations, which allows variations in
the length of the execution time for each task. In the future,
we would like to test our solution on a real hardware platform.
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Abstract—We propose a SMT method to derive a real-time
guaranteed schedule for the autonomous driving system de-
scribed in the industry challenge. All timing constraints proposed
as the industry challenge are considered in our SMT model.

I. PROBLEM STATEMENT

We focus on an autonomous driving system with the
processing graph as shown in Figure 1. Starting from the
left side, the sensors, e.g., mmWave radar, LiDAR, Camera,
and GNSS/IMU, produce raw data, which are processed
by downstream components in the system. The sensors and
processing components are all invoked periodically and at
different frequencies. For example, the camera captures images
at 30 Hz and the “tracking” task are invoked at 10 Hz as shown
in Figure 1.

Fig. 1. Processing graph of an autonomous driving system.

Sensing Data. There are two types of sensor data: event
sensing data and status sensing data. Status sensing data are
used to report the status. Event sensing data are used to
detect events. Without loss of generality, we let the data from
GNSS/IMU be the status sensing data, and let the data from
camera, mmWave radars and LiDAR be the event sensing data.
When an event happens, (some of) the corresponding sensors
are capable to capturing this event.
Task Processing. There is an unit-size buffer between each
pair of adjacent components (e.g., the “tracking” component
and the “prediction” component). The upstream (“tracking”)
component writes data to the buffer via an output port. The
downstream (“prediction”) component reads data from the
buffer via an input port. After a task is ready for execution,
it first reads data from one or multiple input ports. When the
task finishes, it produces output data to its output ports. The

old data in the buffer is over-written by the new data produced
by the upstream component. The data writing and reading are
applied in a non-blocking manner. We assume that there is no
data communication delay between tasks.
Computation Platform. For simplicity, we consider the plat-
form with three computation resources, i.e., a DSP, a GPU
and a CPU.1 The processing procedures of sensor data (from
mmWave Radar, camera, LiDAR, and GNSS/IMU) are exe-
cuted on the DSP. The perception (including “2D perception”,
“3D perception” and “perception fusion”) and localization are
deployed on the GPU. Other procedures (including “tracking”,
“prediction”, “planing” and “control” ) are deployed on the
CPU. The scheduling on each computation resource is non-
preemptive.
Timing Constraints. We aim to schedule tasks in the au-
tonomous driving system meeting the following three main
timing constraints.
• When an event occurs, its related data must be perceived,

processed and eventually used to generate control com-
mands within a certain time limit.

• The control command must be performed based on the
status information generated sufficiently fresh.

• The difference among the timestamps of the correspond-
ing raw data read by a task from its input ports must be
no longer than a pre-defined threshold.

II. SYSTEM MODEL

A. Multi-Rate DAG Task

We use a multi-rate directed acyclic graph (DAG) model
G = (V,E) to represent an autonomous system, where V is
the set of vertices, E is the set of edges between vertices.
Each vertex vi of V represents the task τi with the execution
time ei, the period Pi, and the relative deadline Di. The task
τi releases jobs periodically. For the sake of convenience, we
assume that each task τi releases its x-th job Ji,x at time
ri,x = (x − 1)Pi, and the absolute deadline of Ji,x is (x −
1)Pi + Di. For simplicity, we consider that each task τi has
the implicit deadline , i.e., Di = Pi. A job is ready to be
executed once it is released, and must be completed before its
absolute deadline. Each edge (vi, vj) of E indicates that there
is a buffer Bij with size 1 between the tasks τi and τj . When

1Our method can also be extended to the computation platform with
multiple DSPs, GPUs, and multi-core CPUs.



a job Jj,x of τj is ready to executed, it first reads from the
buffer Bij which are associated with the edge (vi, vj) ending
at vj . When the job Jj,x finishes, it writes to the buffer Bji

which are associated with the edge (vj , vi) beginning with vj .
The reading and writing time are both assumed to be 0. The
vertex with no incoming edges is called source vertex. The
vertex with no outgoing edges is called sink vertex. There
may be multiple source vertices and sink vertices in G.

Example 1. The corresponding multi-rate DAG G of the
autonomous driving system in Figure 1 is shown in Figure 2.
The DAG G has 12 vertices and 11 edges. Each vertex is
labeled with its period. There are three types of periods, i.e.,
10 ms, 33 ms and 100 ms. The buffer between two vertices
is labeled on their associated edge. There are four source
vertices, i.e., v0, v1, v2 and v3, and a single sink vertex v11.
The task of each vertex is also listed in the above of Figure 2.

Fig. 2. Multi-rate DAG G of the autonomous driving system given in Figure 1.

B. Scheduling Model

We schedule the tasks of G on a heterogeneous platform
including three types of processors: DSP, GPU and CPU. We
divide the vertex set V into three disjoint subsets: V = V1 ∪
V2 ∪ V3. The vertices in V1 can only be executed on the DSP.
The vertices in V2 can only be executed on the GPU. The
vertices in V3 can only be executed on the CPU. For example,
as shown in Figure 2, the vertices marked blue are contained
in V1, i.e., V1 = {v0, v1, v2, v3}. The vertices marked orange
are contained in V2, i.e., V2 = {v4, v5, v6, v7}. The vertices
marked green are contained in V3, i.e., V3 = {v8, v9, v10, v11}.
The scheduling strategy on each processor is non-preemptive.

Scheduling Constraints
In the following, we formally describe the timing constraints

that a feasible schedule of G should satisfy. Before going into
details, we first introduce some useful notations.

Definition 1 (Path). A path π of G is a sequence of vertices
π = (v1, v2, · · · , vk) such that each pair of adjacent vertices
vi and vi+1 corresponds to an edge (vi, vi+1) of G.

For example, as shown in Figure 2, π = {v1, v4, v7, v8, v9,
v10, v11} is a path of G. For any two vertices vi and vj of
G, we say vj is reachable from vi if there is a path from vi

to vj . For any vertex vi of G, we use Rsrc(vi) to denote the
set of source vertices that reach vi. For example, as shown
in Figure 2, Rsrc(v8) = {v1, v2, v3}. As we know that each
source vertex of G corresponds to a sensor, and each job Ji,x
of vi should deal with the data flows coming from the source
vertices in Rsrc(vi). For simplicity, we give the following
assumption.

Assumption 1. For any two vertices vi and vj of G, Rsrc(vi)∩
Rsrc(vj) = ∅ if vi and vj can be executed in parallel.

Clearly, the DAG model of the autonomous driving system
as shown in Figure 2 satisfies the above assumption since it
has a tree structure.

Definition 2 (Cause-effect chain). The cause-effect chain c
that corresponds to a path π is a sequence of jobs such that
• The i-th Ji,x job of chain c is released by the task of the
i-th vertex vi of π.

• For any two adjacent jobs Ji,x and Ji+1,y , the job Ji,x
has the maximum finishing time among all jobs that are
released by τi and finish before the starting of Job Ji+1,y .

The latency of c is the difference between the finishing time of
the last job of c and the release time of the first job of c.

Fig. 3. Illustration for cause-effect chain

For example, we consider a path π = {v0, v6}, and one of
its possible cause-effect chains c = {J0,2, J6,1} is shown in
Figure 3. It should emphasize that the job sequence (J0,1, J6,1)
is not a cause-effect chain since J0,1 is not the last job that
finishes before J6,1. Moreover, job sequence (J0,3, J6,1) is not
a cause-effect chain since J0,3 is not finished before the start
of J6,1.

We distinguish two types of source vertices: event source
vertex and status source vertex. As shown in Figure 2, there
is only one status source vertex v0 and three event source
vertices v1, v2 and v3. We say a path π is a complete path of
G if π starts with an event source vertex and ends at a sink
vertex. For example, three complete paths in Figure 2 are π1 =
{v1, v4, v7, v8, v9, v10, v11}, π2 = {v2, v5, v7, v8, v9, v10, v11},
and π3 = {v3, v7, v8, v9, v10, v11}.

Definition 3 (Reactive time). The reactive time of G is the
maximum latency among all the cause-effect chains corre-
sponding to the complete paths of G.

Definition 4 (Time stamp). For any job Ji,x, its time stamp is
a set of integers {sji,x|vj ∈ Rsrc(vi)}, where sji,x is a release



time of a job Jj,y released by the source vertex vj such that
there is a cause-effect chain from Jj,y to Ji,x.

Figure 4 gives a (part of) possible schedule of the jobs in G.
The time stamp of job J7,1 is {s17,1, s27,1, s37,1}. The time stamp
s17,1 equals to the release time of J1,2 as there is a cause-effect
chain from J1,2 to J7,1, i.e., (J1,2, J4,2, J7,1) according to the
above definition. Similarly, time stamp s27,1 and s37,1 equal to
the release time of J2,1 and J3,1, respectively.

Fig. 4. Illustration for time stamp

According to Assumption 1, for any job Ji,x and for any
source vertex vj , there is only one cause-effect chain from a
job of vj to Ji,x. According to Definition 4, each time stamp
sji,x of Ji,x has an unique value, which can be calculated as
follows.
• If vi is a source vertex, then

sji,x = ri,x (1)

• Otherwise, there is a cause-effect chain (Jj,z, · · · , Jl,y,
Ji,x). The time stamp sji,x is calculated as

sji,x = sjl,y (2)

Based on the above concepts, the timing constraints of a
feasible schedule is formulated as follows.
• The reactive time of G is bounded by ∆.
• For simplicity, we consider the multi-rate DAG as shown

in Figure 2, there is a single status sensing task τ1 and
a single control task τ11. These two tasks have the same
period. In each period, the control job released by τ11
should start after the completion of job released by task
τ1.

• For each job Ji,x, and for any two time stamps sji,x and
sli,x of Ji,x, the difference between sji,x and sli,x must be
less than ∆′, i.e., |sji,x − sli,x| ≤ ∆′.

III. REAL-TIME GUARANTEED SCHEDULING

In this section, we aim to derive a static periodic schedule
of G that satisfies all timing constraints described in the above
section. To this end, we first transform a multi-rate DAG
G into its equivalent single-rate DAG G′. Then we solve a
feasible schedule of G by developing a SMT model for the
scheduling problem defined on G′.

A. Single-Rate DAG Transformation

The transformation from a multi-rate DAG G to its cor-
responding single-rate DAG G′ is applied in Algorithm 1.
Similar transformation process was also proposed in [1].

Algorithm 1: Transformation from G to G′.

1 generate a virtual source vertex vsrc with execution time 0
2 generate a virtual sink vertex vsnk with execution time 0
3 for each vertex vi of G do
4 let k := HP

Pi

5 generate k job vertices vi,1, · · · , vi,k, each with
execution time ei and relative deadline Di

6 if k = 1 then
7 add an edge from vsrc to the first job vertex vi,1
8 add an edge from the last job vertex vi,k to vsnk

9 else
10 generate k dummy vertices δi,1, · · · , δi,k
11 generate k− 1 synchronous vertices σi,1, · · · , σi,k−1

12 let σi,0 = vsrc and δi,k = vsnk

13 for each j = 1, · · · , k do
14 add an edge from vi,j to σi,j

15 add an edge from δi,j to σi,j

16 add an edge from σi,j−1 to vi,j
17 add an edge from σi,j−1 to δi,j

We first denote the hyper period of G as the least common
multiple of period of tasks involved in G, i.e., HP =
lcm∀vi∈V {Pi}. For example, the hyper period of G is HP =
lcm{10 ms, 33 ms, 100 ms} = 100 ms. Algorithm 1 aims to
obtain a transformed DAG G′ with a single period HP , and
thus, all jobs of the original DAG G that are released during a
hyper period HP are revealed in the single-rate DAG G′. As
shown in Lines 1 and 2, we generate a virtual source vertex
vsrc and a virtual sink vertex vsnk. For each vertex vi of G,
we generate a sequence of job vertices (vi,1, · · · , vi,k), where
k = HP

Pi
is the number of jobs released by τi during a single

hyper period HP (see Lines 4 an 5). We consider the following
two cases. If there is only a single job of τi released in a hyper
period, we connect the virtual source vertex vsrc to the first
job vertex vi,1, and connect the last job vertex vi,k to the
virtual sink vertex vsnk. Otherwise, there are multiple jobs of
τi released during a hyper period HP , i.e., k > 1. For each job
vertex vi,x, we add two auxiliary vertices: a dummy vertex δi,x
with execution time ei and a synchronous vertex σi,x with zero
execution time. For the sake of convenience, we let σi,0 = vsrc
and σi,k = vsnk. The job vertex vi,x and dummy vertex δi,x
both join to σi,x for synchronization, and meanwhile, vi,x and
δi,x are both forked from the vertex σi,x−1.

Figure 5 gives the equivalent single-rate DAG G′ of G that
is generated by Algorithm 1. All dummy vertices are labeled
with their execution time. The execution of G′ starts from
vsrc and ends at vsnk. A vertex in G′ is eligible to execute
only if all its predecessors are finished. For example, the job
vertex vi,x can only start when the synchronous vertex σi,x−1
is finished. It indicates that vi,x releases its job at time (x −
1)Pi. Moreover, the job of vi,x must finish before xPi due to



Fig. 5. Single-rate DAG G′ transformed from G in Figure 2.

its deadline requirement. The job of vi,x is executed during
its own period.

B. SMT-based Schedule Generation

We aim to derive a schedule of the single-rate DAG G′ in
Figure 5 (during a hyper period HP ). Such a schedule is static
and is periodically repeated each hyper period. The scheduling
problem of G′ is formulated as follows. The constants and
variables are listed in Table I and Table II, respectively.

TABLE I
CONSTANTS INVOLVED IN THE SMT FORMULATION

constant description
ei the execution time of each job vertex vi,x
ri,x the release time of job Ji,x, i.e., ri,x = (x− 1)Pi

di,x the absolute deadline of job Ji,x, i.e., di,x = xPi

V1 the set of vertices that are executed on DSP
V2 the set of vertices that are executed on GPU
V3 the set of vertices that are executed on CPU

TABLE II
VARIABLES INVOLVED IN THE SMT FORMULATION

variable type description
bi,x integer the beginning time of the job vertex vi,x
fi,x integer the finishing time of the job vertex vi,x
Sj
i,x integer the value of time stamp of job Ji,x related

to sensor vj

Constraints.
Non-preemptive. The execution of each job Ji,x is non-

preemptive, i.e.,
fi,x = bi,x + ei (3)

Implicit deadline. Each job Ji,x must start after its release
time ri,x and finish before its absolute deadline di,x, i.e.,

bi,x ≥ ri,x ∧ fi,x ≤ di,x (4)

Exclusive execution. Any two jobs that need to be executed
on the same computation resource should be executed sequen-
tially, i.e., for any vertex subset Vk (k = 1, 2, 3) as defined in



Section II-B and for any two vertices vi and vj of Vk, the jobs
Ji,x and Jj,y separately released by τi and τj must satisfy the
following constraint:

bi,x ≥ fj,y ∨ fi,x ≤ bj,y (5)

Time stamp computation. For any source vertex vi of G
(i = 0, · · · , 3), and for any job vertex Ji,x in G′, according to
(1), there is a single time stamp sii,x of Ji,x, which is calculated
as follows.

sii,x = ri,x (6)

For any task τi, we let Ji,0 be the last job of τi released
in the previous hyper period. For each vertex vj ∈ Rsrc(vi),
the time stamp sji,0 of Ji,0 is calculated as follows. We let
k = HP

Pi
,

sji,0 = sji,k −HP (7)

Figure 6 illustrates the above formula.

Fig. 6. The difference between the time stamps of Ji,0 and Ji,k is HP

For any edge (vi, vj) of G, and for any two job vertices
Ji,x and Jj,y (here x ≥ 0 and y ≥ 1), if Ji,x is the last job
finished before Jj,y starts, the time stamp of Jj,y equals to
that of Ji,x, i.e., for each vl ∈ Rsrc(vi),∧

z>x

(fi,z ≥ bj,y) ∧ (fi,x < bj,y) ∧ (sli,x = slj,y) (8)

The first item and the second item ensure that Ji,x is the
last job finished before the start of Jj,y , and according to
Definition 2, (Ji,x, Jj,y) is a cause-effect chain. According to
Definition 4 and by (2), the time stamp of J l

j,y is calculated
as the third item of (8).

In the following, we formulate three timing constrains as
described in Section II-B.

Reaction time. The reaction time of G is less than a pre-
defined value ∆.

f11,x − si11,x ≤ ∆ vi ∈ Rsrc(v11) (9)

Data freshness. The status sensing data released from
GNSS/IMU sensor must sufficiently fresh when it is used by
control modular. Noting that the GNSS/IMU task τ0 and the
control task τ11 have the same period, i.e., P0 = 10ms and
P11 = 10ms, we enforce that for each x = 1, · · · , k, the job
J0,x of τ0 must be finished before the job J11,x of τ11 starts,
i.e.,

b11,x > f0,x (10)

Difference of time stamps. For each job Ji,x, the difference
of any two of its timestamps is upper-bounded by a pre-defined
value ∆′, i.e.,

|sji,x − s
l
i,x| ≤ ∆′ ∀vj , vl ∈ Rsrc(vi) (11)

By using the above SMT formulation, we can compute a
feasible schedule of G′, which can be periodically used as a
static schedule of G for each hyper period. The SMT model
for the autonomous driving system in Figure 1 has 56 variables
and 388 constraints.
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Considering the instance of autonomous driving system mentioned in RTSS 2021 Industry Challenge, 
a mixed integer linear programming (MILP) model is built to formulate this specific instance. Based on 
the specific instance, system and scheduling models are proposed correspondingly. 
 
System and application model: 

The processing units are modelled as a system consists of m heterogeneous processors (e.g., CPU, 
GPU or DSP). The data communication delay between different processors is zero. 

Row data produced by sensors including “mmWave Radar”, “camera”, “LiDAR” and “GNSS/IMU”, 
are released periodically. A set of periodic sensing tasks 𝛿𝛿𝑖𝑖,𝑗𝑗 = (𝑝𝑝𝑝𝑝𝑖𝑖 , 𝑟𝑟𝑟𝑟𝑖𝑖,𝑗𝑗) is used to model the source 
data, where 𝛿𝛿𝑖𝑖,𝑗𝑗  represents its j-th job of task 𝛿𝛿𝑖𝑖  with its period 𝑝𝑝𝑝𝑝𝑖𝑖   and release time 𝑟𝑟𝑟𝑟𝑖𝑖,𝑗𝑗 . It is 
assumed that the release time is known in advance as (1): 

𝑟𝑟𝑠𝑠𝑖𝑖,𝑗𝑗+1 = 𝑟𝑟𝑠𝑠𝑖𝑖,𝑗𝑗 + 𝑝𝑝𝑠𝑠𝑖𝑖 , 𝑗𝑗 = 0,1,2 … (1) 
For the processing components, 𝜏𝜏𝑙𝑙,𝑘𝑘 = (𝑝𝑝𝑙𝑙 ,𝒘𝒘𝒍𝒍,𝒌𝒌) is used to model these processing tasks, where 𝜏𝜏𝑙𝑙,𝑘𝑘 

represents the k-th job of task 𝜏𝜏𝑙𝑙  and 𝒘𝒘𝒍𝒍,𝒌𝒌  is an m-dimension vector consisting of the worst-case 
execution time (WCET) on the corresponding processors. We divide the tasks into “pre-processing tasks” 
and “processing tasks”, where pre-processing tasks refer to the tasks reading data directly, such as “2D 
Perception”, “Perception Fusion” and “Location” and processing tasks refer to the other ones. 

In addition, the hybrid period (HP) is calculated by the least common multiple of all the periods of 
sensing and processing tasks.  

 

 
Scheduling model 
  Based on the application and system models, some decision variables are defined and added to build 
a MILP model to formulate the timing constraints and the whole procedure. In this work, we consider all 
the sensing tasks released in one HP. All of the pre-processing and processing tasks read and use the 
sensing data are scheduled while the tasks might be processed after the first HP ends because of the lack 



of computing capability. 
Table 1. Notations for the real-time DAG scheduling problem 

 Notation Implication 

Instance 
Data 

n number of tasks in the DAG; 
m number of processors; 

𝑤𝑤𝑙𝑙,𝑘𝑘(𝑖𝑖) WCET of the k-th job of task l on processor i; 
psi period of sensing task i; 
pl period of processing task l; 

HP hyper period of the DAG; 

Others 
M a very large constant number; 

t1→t2 task t1 is precedent of task t2, i.e., a direct edge exists between node t1 and t2 in DAG. 

Decision 

variables 

𝑥𝑥𝑙𝑙,𝑘𝑘,𝑖𝑖,𝑟𝑟 
𝑥𝑥𝑙𝑙,𝑘𝑘,𝑖𝑖,𝑟𝑟 ∈ {0,1}, 𝑥𝑥𝑙𝑙,𝑘𝑘,𝑖𝑖,𝑟𝑟 = 1 denotes that the k-th job of task l is the r-th job processed on 
processor i during the hybrid period, otherwise, 𝑥𝑥𝑙𝑙,𝑘𝑘,𝑖𝑖,𝑟𝑟 = 0. 

𝑠𝑠𝑙𝑙,𝑘𝑘 𝑠𝑠𝑙𝑙,𝑘𝑘 ≥ 0, the starting time of the k-th job of task l; 
𝑐𝑐𝑙𝑙,𝑘𝑘 𝑐𝑐𝑙𝑙,𝑘𝑘 ≥ 0, the completion time of the k-th job of task l. 

qs(i, l) 𝑞𝑞𝑞𝑞(𝑖𝑖, 𝑙𝑙) ∈ 𝑵𝑵, the order of sensing job of task i used by pre-processing task l; 
q(l, k) 𝑞𝑞(𝑖𝑖, 𝑙𝑙) ∈ 𝑵𝑵, the order of job of task l used by processing task k; 

 ls(i, l) 𝑙𝑙𝑙𝑙(𝑖𝑖, 𝑙𝑙) ∈ 𝑵𝑵, the number of HP between sensing task i and its pre-processing task l; 

 llk 𝑙𝑙𝑙𝑙𝑙𝑙 ∈ 𝑵𝑵, the number of HP between task l and k where task k uses the data of task l. 

 
Locate the source data token for each task: 

As the buffer is over-written when a new token is produced, only the latest released data can be 
received by its following task. For each pair of tasks in DAG where exists a path between them, its real 
data transmission path needs to be determined and the transmission time can be calculated with q(i, l) 
and llk defined in Table 1. The DAG path and real data transmission path are illustrated in Figure. 2. 

 

Figure. 2 A simple example of DAG path and its corresponding data transmission path 
  It can be seen from Figure 2, for sensing task 𝛿𝛿𝑘𝑘, 𝑟𝑟 = 𝐻𝐻𝐻𝐻/𝑝𝑝𝑝𝑝(𝛿𝛿𝑘𝑘) jobs are released during the HP. 
For its pre-processing task 𝜏𝜏𝑖𝑖, to determine which job is received (x in Figure 2), the relationship between 
the starting time of pre-processing task and the release time of sensing data is considered.  

It is obviously that if we have: 
𝑟𝑟𝑠𝑠𝑘𝑘,𝑥𝑥 + 𝑙𝑙𝑙𝑙(𝑘𝑘, 𝑖𝑖) × 𝐻𝐻𝐻𝐻 ≤ 𝑠𝑠𝑖𝑖,𝑦𝑦 ≤ 𝑟𝑟𝑠𝑠𝑘𝑘,𝑥𝑥+1 + 𝑙𝑙𝑙𝑙(𝑘𝑘, 𝑖𝑖) × 𝐻𝐻𝐻𝐻 (2) 



Then, based on (1), we have (3)-(6): 
𝑟𝑟𝑠𝑠𝑖𝑖,0 + 𝑞𝑞𝑞𝑞(𝑘𝑘, 𝑖𝑖) ∙ 𝑝𝑝𝑠𝑠𝑖𝑖 + 𝑙𝑙𝑙𝑙(𝑘𝑘, 𝑖𝑖) × 𝐻𝐻𝐻𝐻 ≤ 𝑠𝑠𝑙𝑙,𝑡𝑡 (3) 

𝑠𝑠𝑙𝑙,𝑡𝑡 ≤ 𝑟𝑟𝑠𝑠𝑖𝑖,0 + (𝑞𝑞𝑞𝑞(𝑘𝑘, 𝑖𝑖) + 1) ∙ 𝑝𝑝𝑠𝑠𝑖𝑖 + 𝑙𝑙𝑙𝑙(𝑘𝑘, 𝑖𝑖) × 𝐻𝐻𝐻𝐻,   𝑦𝑦 = 0,1, … ,
𝐻𝐻𝐻𝐻
𝑝𝑝𝑖𝑖

− 1 (4) 

0 ≤ 𝑞𝑞𝑞𝑞(𝑘𝑘, 𝑖𝑖) ≤
𝑝𝑝𝑖𝑖
𝑝𝑝𝑠𝑠𝑘𝑘  

− 1 (5) 

𝑙𝑙𝑙𝑙(𝑘𝑘, 𝑖𝑖) ∈ 𝑵𝑵 (6) 
  In this way, the data transmission delay (dki) between sensing task 𝛿𝛿𝑘𝑘 and its pre-processing task 𝜏𝜏𝑖𝑖 
can be calculated as: 

𝑑𝑑𝑑𝑑𝑘𝑘𝑘𝑘 = 𝑙𝑙𝑙𝑙(𝑘𝑘, 𝑖𝑖) × 𝐻𝐻𝐻𝐻 − 𝑞𝑞𝑠𝑠(𝑘𝑘, 𝑖𝑖) × 𝑝𝑝𝑠𝑠𝑘𝑘 (7) 
Similarly, considering the processing task 𝜏𝜏𝑖𝑖 and 𝜏𝜏𝑗𝑗 with different frequency, it takes some efforts 

to determine which job of 𝜏𝜏𝑖𝑖 is received by task 𝜏𝜏𝑗𝑗 (y in Figure 2) as the starting and completion time 
of pre-processing tasks are not determined in the heterogeneous processing system. Take task pair (𝜏𝜏1, 𝜏𝜏3) 
in Figure. 1 as an example, where 𝑐𝑐′1,0 represents the completion time of 𝜏𝜏1,0 in the next hybrid period: 
 

 

Figure. 3 An illustration of how to locate the source data 
  To determine which interval starting time of the following job belongs to, some inter-variables (ak and 
zl) are introduced into our model: 

𝑠𝑠3,0 = 𝑎𝑎0 ∙ 𝑐𝑐1,0 + 𝑎𝑎1 ∙ 𝑐𝑐1,1 + 𝑎𝑎2 ∙ 𝑐𝑐1,2 + 𝑎𝑎3 ∙ 𝑐𝑐′1,0 + 𝑙𝑙13 ∙ 𝐻𝐻𝐻𝐻 (8) 
0 ≤ 𝑎𝑎0 ≤ 𝑧𝑧0 (9 − 1) 

0 ≤ 𝑎𝑎1 ≤ 𝑧𝑧0 + 𝑧𝑧1 (9 − 2) 
0 ≤ 𝑎𝑎2 ≤ 𝑧𝑧1 + 𝑧𝑧2 (9 − 3) 

0 ≤ 𝑎𝑎3 ≤ 𝑧𝑧2 (9 − 4) 
𝑧𝑧0 + 𝑧𝑧1 + 𝑧𝑧2 = 1, 𝑧𝑧0, 𝑧𝑧1, 𝑧𝑧3 ∈ {0,1} (10) 

𝑞𝑞(1,3) = 𝑧𝑧1 + 2 ∙ 𝑧𝑧2 (11) 
In this way, 𝑞𝑞(1,3) can be deduced by the starting time and completion time of its precedent jobs. Thus, 
the data transmission delay (d2) between task pair (𝜏𝜏𝑖𝑖 , 𝜏𝜏𝑗𝑗)  directly connect with an edge can be 
calculated as: 

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑖𝑖𝑖𝑖 × 𝐻𝐻𝐻𝐻 − 𝑞𝑞(𝑘𝑘, 𝑖𝑖) × 𝑝𝑝𝑘𝑘 (12) 
 
Correlation constraints 



time-skew between its input source sensing tasks should be limited, i.e. 𝑪𝑪(𝒀𝒀|𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐, … ,𝑿𝑿𝒊𝒊) = 𝜺𝜺𝒄𝒄 where 
𝜀𝜀𝑐𝑐 denotes the pre-defined upper bound.  

For this specific DAG, we have: 
𝐶𝐶(𝜏𝜏3|𝛿𝛿1,𝛿𝛿2, 𝛿𝛿3) = 𝜀𝜀𝑐𝑐 (13) 
𝐶𝐶(𝜏𝜏4|𝛿𝛿3, 𝛿𝛿4) = 𝜀𝜀𝑐𝑐 (14) 

𝐶𝐶(𝜏𝜏7|𝛿𝛿1, 𝛿𝛿2, 𝛿𝛿3,𝛿𝛿4) = 𝜀𝜀𝑐𝑐 (15) 
Specifically, considering 𝐶𝐶(𝜏𝜏3|𝛿𝛿1,𝛿𝛿2, 𝛿𝛿3) = 𝜀𝜀𝑐𝑐, we have: 

𝐶𝐶(𝜏𝜏3|𝛿𝛿1,𝛿𝛿2) = 𝜀𝜀𝑐𝑐 → |𝑑𝑑𝑠𝑠13 − 𝑑𝑑𝑠𝑠23| ≤ 𝜀𝜀𝑐𝑐 
(𝑙𝑙𝑙𝑙(1,3) × 𝐻𝐻𝐻𝐻 − 𝑞𝑞𝑠𝑠(1,3) × 𝑝𝑝𝑠𝑠3) − (𝑙𝑙𝑙𝑙(2,3) × 𝐻𝐻𝐻𝐻 − 𝑞𝑞𝑠𝑠(2,3) × 𝑝𝑝𝑠𝑠3) ≤ 𝜀𝜀𝑐𝑐 
(𝑙𝑙𝑙𝑙(2,3) × 𝐻𝐻𝐻𝐻 − 𝑞𝑞𝑠𝑠(2,3) × 𝑝𝑝𝑠𝑠3) − (𝑙𝑙𝑙𝑙(1,3) × 𝐻𝐻𝐻𝐻 − 𝑞𝑞𝑠𝑠(1,3) × 𝑝𝑝𝑠𝑠3) ≤ 𝜀𝜀𝑐𝑐 

𝐶𝐶(𝜏𝜏3|𝛿𝛿1,𝛿𝛿3) = 𝜀𝜀𝑐𝑐 → |𝑑𝑑𝑠𝑠13 − 𝑑𝑑𝑠𝑠33| ≤ 𝜀𝜀𝑐𝑐 
(𝑙𝑙𝑙𝑙(1,3) × 𝐻𝐻𝐻𝐻 − 𝑞𝑞𝑠𝑠(1,3) × 𝑝𝑝𝑠𝑠3) − (𝑙𝑙𝑙𝑙(3,3) × 𝐻𝐻𝐻𝐻 − 𝑞𝑞𝑠𝑠(3,3) × 𝑝𝑝𝑠𝑠3) ≤ 𝜀𝜀𝑐𝑐 
(𝑙𝑙𝑙𝑙(3,3) × 𝐻𝐻𝐻𝐻 − 𝑞𝑞𝑠𝑠(3,3) × 𝑝𝑝𝑠𝑠3) − (𝑙𝑙𝑙𝑙(1,3) × 𝐻𝐻𝐻𝐻 − 𝑞𝑞𝑠𝑠(1,3) × 𝑝𝑝𝑠𝑠3) ≤ 𝜀𝜀𝑐𝑐 

𝐶𝐶(𝜏𝜏3|𝛿𝛿2,𝛿𝛿3) = 𝜀𝜀𝑐𝑐 → |𝑑𝑑𝑠𝑠23 − 𝑑𝑑𝑠𝑠33| ≤ 𝜀𝜀𝑐𝑐 
(𝑙𝑙𝑙𝑙(2,3) × 𝐻𝐻𝐻𝐻 − 𝑞𝑞𝑠𝑠(2,3) × 𝑝𝑝𝑠𝑠3) − (𝑙𝑙𝑙𝑙(3,3) × 𝐻𝐻𝐻𝐻 − 𝑞𝑞𝑠𝑠(3,3) × 𝑝𝑝𝑠𝑠3) ≤ 𝜀𝜀𝑐𝑐 
(𝑙𝑙𝑙𝑙(3,3) × 𝐻𝐻𝐻𝐻 − 𝑞𝑞𝑠𝑠(3,3) × 𝑝𝑝𝑠𝑠3) − (𝑙𝑙𝑙𝑙(2,3) × 𝐻𝐻𝐻𝐻 − 𝑞𝑞𝑠𝑠(2,3) × 𝑝𝑝𝑠𝑠3) ≤ 𝜀𝜀𝑐𝑐 

In this way, for this instance, 𝐴𝐴32 + 𝐴𝐴22 + 𝐴𝐴42 = 6 + 2 + 12 = 20  constraints are introduced to our 
model. In addition, the correction constraints of 𝜏𝜏5 and 𝜏𝜏6 are guaranteed by 𝜏𝜏3. Similarly, the time-
skew between source data of 𝜏𝜏8 is constrained by the constraints of 𝜏𝜏7. 
 
Freshness constraints 

To meet the first timing constraint in the RTSS challenge: “Let a be a sensor data token and b be the 
final data output indirectly caused by a. If b is produced at t, then a must be produced no earlier than a 
pre-defined value before t”, i.e., the freshness constraints mentioned in [1].  

For this specific DAG, we have: 
𝐹𝐹(𝑌𝑌|𝛿𝛿𝑖𝑖) = 𝜀𝜀𝑓𝑓 ,∀𝑖𝑖. (16) 

where 𝜀𝜀𝑓𝑓 denotes the pre-defined upper bound. 
  Specifically, considering 𝐹𝐹(𝑌𝑌|𝛿𝛿3) = 𝜀𝜀𝑓𝑓, we have: 

|𝑑𝑑𝑠𝑠34 + 𝑑𝑑47 + 𝑑𝑑78| ≤ 𝜀𝜀𝑓𝑓 
|𝑑𝑑𝑠𝑠32 + 𝑑𝑑23 + 𝑑𝑑35 + 𝑑𝑑56 + 𝑑𝑑67 + 𝑑𝑑78| ≤ 𝜀𝜀𝑓𝑓 

where the delay can be calculated according to (7) and (12). 
 
Scheduling constraints 
  In spite of the data transmission path, feasible schedule in the heterogeneous system should be 
guaranteed. Figure 4 presents a gantt paint for the instance in Figure 2. It can be seen that:  

𝑠𝑠𝑖𝑖,0 = 𝑟𝑟𝑠𝑠𝑘𝑘,0;  𝑠𝑠𝑗𝑗,0 ≥ 𝑐𝑐𝑖𝑖,0, 𝑠𝑠𝑗𝑗,0 < 𝑐𝑐𝑖𝑖,1: 𝛿𝛿𝑘𝑘.0 → 𝜏𝜏𝑖𝑖,0 → 𝜏𝜏𝑗𝑗,0 
𝑟𝑟𝑠𝑠𝑘𝑘,𝑥𝑥−1 < 𝑠𝑠𝑖𝑖,3 < 𝑟𝑟𝑠𝑠𝑘𝑘,𝑥𝑥;  𝑠𝑠𝑗𝑗,1 ≥ 𝑐𝑐𝑖𝑖,3, 𝑠𝑠𝑗𝑗,1 < 𝑐𝑐𝑖𝑖,4: 𝛿𝛿𝑘𝑘.𝑥𝑥−1 → 𝜏𝜏𝑖𝑖,3 → 𝜏𝜏𝑗𝑗,1. 

It is obvious that the data transmission path can be deduced according to the starting time and 
completion time of the corresponding jobs. The values of starting and completion time can be calculated 
through the inherent constraints mentioned next. 

For the jobs in task pair linked with edge in the DAG, constraints as (6) are able to guarantee the 
precedence constraint because of 𝑎𝑎𝑖𝑖 ≥ 0,∀𝑖𝑖 . On the other hand, there exist precedence constraints 
between the jobs of one task. Besides, the processor is able to compute at most one job during a certain 
time period while the tasks are non-preemptive. Based on our previous work [2], the assumptions are 



modelled as follows: 
 

 
Figure. 4 A simple example of DAG path and its corresponding gantt paint on two processors 

 
∑𝑟𝑟=1
𝑛𝑛 ∑𝑖𝑖=1

𝑚𝑚 𝑥𝑥𝑙𝑙,𝑘𝑘,𝑖𝑖,𝑟𝑟 = 1,∀𝑙𝑙, 𝑘𝑘                             (17) 
∑𝑙𝑙=1
𝑛𝑛 ∑ 𝑥𝑥𝑙𝑙,𝑘𝑘,𝑖𝑖,𝑟𝑟 ≤ 1𝑘𝑘 ,∀𝑖𝑖, 𝑟𝑟                             (18) 

∑𝑙𝑙1=1
𝑛𝑛 ∑ 𝑥𝑥𝑙𝑙1,𝑘𝑘,𝑖𝑖,𝑟𝑟−1𝑘𝑘 ≥ ∑𝑙𝑙2=1

𝑛𝑛 ∑ 𝑥𝑥𝑙𝑙2,𝑘𝑘,𝑖𝑖,𝑟𝑟𝑘𝑘 ,∀𝑟𝑟 ≥ 1, 𝑖𝑖                    (19) 
𝑠𝑠𝑙𝑙1,𝑘𝑘1 − 𝑐𝑐𝑙𝑙2,𝑘𝑘2 + 𝑀𝑀 ∙ �2 − 𝑥𝑥𝑙𝑙1,𝑘𝑘1,𝑖𝑖,𝑟𝑟 − 𝑥𝑥𝑙𝑙2,𝑘𝑘2,𝑖𝑖,𝑟𝑟−1� ≥ 0,∀𝑙𝑙1, 𝑙𝑙2, 𝑘𝑘1, 𝑘𝑘2, 𝑟𝑟 ≥ 1, 𝑖𝑖        (20) 

𝑐𝑐𝑙𝑙,𝑘𝑘 ≥ 𝑠𝑠𝑙𝑙,𝑘𝑘 + ∑ 𝑤𝑤𝑙𝑙,𝑘𝑘(𝑖𝑖) ∙ ∑ 𝑥𝑥𝑙𝑙,𝑘𝑘,𝑖𝑖,𝑟𝑟𝑟𝑟𝑖𝑖 ,∀𝑙𝑙, 𝑘𝑘                     (21) 
𝑠𝑠𝑙𝑙,𝑘𝑘 ≥ 𝑐𝑐𝑙𝑙,𝑘𝑘−1,∀𝑙𝑙, 𝑘𝑘 ≥ 1                             (22) 

 
where (17) ensures that each job can be processed once and only once; (18) ensures that for a given 
position of a certain processor, no more than one job can be processed in case of avoiding the time 
conflict; To strictly meet the task queue, (19) means that r-th job does not exist in the queue if there is no 
the (r-1)-th task on the certain processor. For the jobs processed on the same processor, (20) ensures that 
the r-th job cannot be started before the completion of the (r-1)-th job.  

In addition, (21) guarantees that the completion time each job is not less than the sum of its starting 
time and the WCET on the certain processor. (22) ensures that the jobs of one task must be processed in 
order. 

 
Optimization objective 
  Combine constraints (3)-(6), general forms of (8-11), (7) and (12), general forms of (13-15) and (16), 
as well as (17-22), the MILP model is built. To improve the efficiency of the system, an objective is 
designed as follows: 

min (∑ (𝑙𝑙𝑡𝑡1𝑡𝑡2 + 𝑞𝑞(𝑡𝑡1, 𝑡𝑡2))𝑡𝑡1→𝑡𝑡2 + ∑ (𝑙𝑙𝑙𝑙(𝑘𝑘, 𝑡𝑡) + 𝑞𝑞𝑞𝑞(𝑘𝑘, 𝑡𝑡))𝛿𝛿𝑘𝑘→𝑡𝑡   
 
For each instance, such a MILP model can be built and used to formulate the problem. If the scale of 

the instance is small, math solver, such as Gurobi, can be adopted to solve the model and a scheduling 
solution is presented according to the decision variables solved by Gurobi. 



MILP based heuristic 
If the scale of instance is too large for the solver, a MILP based heuristic might be adopted inspired by 

[3] where the 0-1 variables are slacked to make the model easier to solve. In this work, the decision 
variables are set as non-negative real numbers rather than 0-1 or non-negative integers. Then, the slacked 
model is solved by Gurobi and a set of {𝑐𝑐∗𝑙𝑙,𝑘𝑘} is calculated. Obviously, compared to the feasible 𝑐𝑐𝑙𝑙,𝑘𝑘, 
𝑐𝑐∗𝑙𝑙,𝑘𝑘 ≤ 𝑐𝑐𝑙𝑙,𝑘𝑘,∀𝑙𝑙, 𝑘𝑘.  

Set {𝑐𝑐∗𝑙𝑙,𝑘𝑘}  as the deadlines of {𝜏𝜏𝑙𝑙,𝑘𝑘}  and schedule the tasks according to Earliest Deadline First 
(EDF). The timing constraints formulated in (13-15) and (16) might be met. 
 
 
[1] Gerber R, Hong S, Saksena M. Guaranteeing End-to-End Timing Constraints by Calibrating 
Intermediate Processes[C]// Real-time Systems Symposium. IEEE, 1994. 
[2] Wu C G, Wang L, Wang J J, A path relinking enhanced estimation of distribution algorithm for direct 
acyclic graph task scheduling problem[J]. Knowledge-Based Systems, 2021:107255. 
[3] Sundar S, Liang B, Offloading dependent tasks with communication delay and deadline 
constraint[C]// IEEE Conference on Computer Communications, INFOCOM 2018, IEEE, 2018, 37-45. 
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Abstract—In this paper, we propose a general solution to the
problem of scheduling real-time applications on heterogeneous
hardware platforms. To fully utilize the computing capacity of
heterogeneous processing units, we model the real-time applica-
tion as a heterogeneous Directed Acyclic Graph (DAG) which
specifies the types of processors (CPU, GPU, etc.) where each
task should run. In this well-known DAG context, we propose
a novel extension aimed at safety-critical systems that operate
in unpredictable environments: the coupling of conditional DAG
nodes with stochasticity. Specifically, conditional DAG nodes en-
able the modeling of systems that execute computational pipelines
based on environmental context, while stochasticity of DAG edges
captures the uncertain nature of a system’s environment or
the reliability of its hardware. Furthermore, considering the
pessimism of deterministic worst-case execution time (WCET)
in scheduling processes, we model execution times of tasks (DAG
nodes) as probability distributions which yields a novel stochastic
conditional DAG model. Coupled with a novel S-bottleneck heuris-
tic and safety-performance (SP) metric, our proposed framework
allows for efficient online scheduling in complex computational
pipelines, with more flexible representation of timing constraints,
and ultimately, safety-performance trade offs.

I. SYSTEM MODEL

A. Stochastic Heterogeneous Conditional DAGs

In the challenge problem model, there are precedence
constraints among different computational tasks, i.e., tasks
are connected with input/output ports following a specific
execution order. To capture this nature, we propose a new
DAG task model, the Stochastic Heterogeneous Conditional
Directed Acyclic Graph (StochHC-DAG), which incorporates
both the timing and resource constraints for safety-critical
autonomous systems. Our core concept is to model com-
putational pipelines that execute conditionally under some
uncertainty, recognizing that not all outcomes can be perfectly
predicted in real-world applications (e.g., extreme events). In
practice, the execution times of tasks are not perfectly known
before run-time and may vary online due to environmental
dynamism and conditions of the hardware platform. Thus,
we propose a generalization of the challenge problem model
by assuming the execution times of tasks follow probability
distributions rather than WCET to reduce schedule pessimism.
To fully utilize this probabilistic information and respect
timing constraints, we additionally propose new DAG node
structures: (1) stochastic conditional nodes for computational

This work was supported by the National Science Foundation under grant
CNS-1932074.

path selection; and (2) sensor/synchronization nodes for con-
trolling the difference of timestamps among data streams. A
real-time application is then represented by a StochHC-DAG,
G = (V,E,C, Type, Tag), described by [1] [2]:
• V = {v1, v2, · · · , vn} is the set of IDs for all computa-

tional tasks in the application.
• E ⊆ V ×V is the set of edges among tasks that indicates

the data dependencies, with associated probabilities indi-
cating the likelihood of edge traversal during execution.

• C = {C1, C2, · · · , Cn} is the set of probability distribu-
tions of execution times for all tasks.

• Type = {type1, type2, · · · , typen} is the set of types
of all tasks. A node in StochHC-DAG has one of the
following types {Computing, Conditional, Sensor, Sync}

• Tag = {tag1, tag2, · · · , tagn} indicates the type of pro-
cessing units that each task should run onto (e.g. CPU,
GPU, DLA etc.).

An example of the proposed DAG framework for the
challenge problem is given in Figure 4.

B. Stochastic Conditional Nodes in DAG Models

To capture the stochastic nature of real-time applications,
a new stochastic conditional node structure is proposed in
StochHC-DAG. This node allows for the selection of compu-
tational paths in a DAG based on events that occur under un-
certainty. For example, consider the event that an autonomous
vehicle is in a good environment for object detection/tracking
vs. a bad environment. In any given window of time, the
outcome of this event is uncertain as detecting/predicting en-
vironment conditions in practice is imperfect. Thus, if varying
computational pipelines are necessary based on environment
conditions, it is critical to model the distribution of possible
execution times. Figure 1 illustrates the structure of our
stochastic conditional node which allows for such a modeling.
Nodes v1 and v2 represent two different computational paths
selected according to environment type. The outgoing edges
of the conditional node are associated with probabilities since
the detection of environment type is uncertain, allowing us
to define execution time distributions based on conditional
uncertainty.

C. Sensor and Synchronization Nodes in DAG Models

As our stochastic conditional node is based on the concept
of environmental events, we propose two new DAG nodes
for sensing, data synchronization, and event generation: (1) a
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Fig. 1: Structure of stochastic conditional node.

Fig. 2: Event generation pipeline depicting sensor and sync nodes.

sensor node for modeling sensor lag and data post-processing;
and (2) a synchronization node for fusing sensor data with
different frequencies. We then define an event generation
pipeline comprising these nodes which acts as an event source
for our DAG task model (Figure 2). The sensor node defines
the distribution of lag between the occurrence of a physical
event (e.g., nearby obstacle) and the availability of raw sensor
data representing the event. Modeling this information in a
DAG allows our scheduling algorithm to account for sensor
characteristics and satisfy data-based timing constraints. The
synchronization node then collects data streams from our
sensor nodes and outputs a fused data stream with a given user-
defined frequency, guaranteeing a bounded difference of data
stream timestamps. To implement our synchronization node,
we propose a smart ring buffer which utilizes data age and
period as illustrated in Figure 3. At each timestep, any new
data are written into the smart ring buffer head. The sensor
timestamp difference as well as the individual period and age
requirements are then verified and data not satisfying these
criteria are dropped from the tail. The wide availability of
DDS middleware make the information for the synchronicity
check readily available for most autonomous systems [3].

Fig. 3: Smart ring buffer for sensor synchronization in sync node.

II. SHIFTING BOTTLENECK SCHEDULING ALGORITHM

We propose a new scheduling algorithm which utilizes our
proposed DAG model and shifting bottleneck heuristics [4]
[5]. Baruah et al. has proposed an exact method to solve the
DAG scheduling problem by solving it as an Integer Linear
Programming (ILP) problem [6]. However, it only works with
the simplest DAG model and he proves in his later work
that it is unlikely to write ILP solver for conditional DAG in
polynomial time [7]. Therefore, considering the safety-critical
requirements and dynamism of autonomous systems, we need
an efficient heuristic instead of an exact method.

A detailed explanation and preliminary implementa-
tion of our algorithm is provided on https://github.com/
Xuanliang-Deng/RTSS2021 Industry Submission. The pro-
cess of the algorithm is briefly summarized below.
• Partition the DAG nodes: We consider the hetero-

geneous platform which consists of different types of
processing units (e.g., CPU, GPU, DSP etc.). In StochHC-
DAG, each node is associated with a tag which indicates
the processing unit where the node should run. Each
node is statically mapped to a processing unit and the
mapping is fixed a priori, thereby partitioning the DAG
nodes according to their tags and allocating them to the
corresponding processing unit.

• Select Bottleneck Processor: The starting makespan of
the DAG is determined by the maximal finish time (FT)
of all nodes on the set of processing units. To select the
bottleneck processor, we first assume that there are no
resource conflicts and each schedulable task originates at
a source node and finishes in a sink node of the DAG.
The potential starting time (ST), where a node vi can
start its execution, is the maximal finish time among all
its predecessors,

STi = max
k∈pred(i)

FTk (1)

The execution time is denoted as ETi, which follows a
probability distribution, yielding the finish time of node
vi as:

FTi = STi + ETi(Ci) (2)

The starting makespan MKk of processing unit k is,

MKk = max
node vi∈proc(k)

FTi (3)

Finally, the starting bottleneck processor is selected by,

max
k∈1,2,...,K

MKk (4)

• Find optimal schedule with Branch and Bound (BnB):
For selected bottleneck processor, we apply a single-
processor analysis by searching with BnB to determine
the optimal schedule. This search is different from typical
BnB techniques as we utilize the precedence constraints
and criticality of nodes in StochHC-DAG (see next Sec-
tion) to greatly reduce the search. Specifically, any po-
tential schedule which violates the precedence constraints

https://github.com/Xuanliang-Deng/RTSS2021_Industry_Submission
https://github.com/Xuanliang-Deng/RTSS2021_Industry_Submission
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(a)

(b)

Fig. 4: (a) Challenge model of an autonomous vehicle computational system; (b) Proposed Stochastic HPC-DAG framework for the problem statement.

in StochHC-DAG will be infeasible. This branch will
be cut directly in the search. In addition, nodes with
higher criticality are expected to be scheduled ahead of
normal DAG nodes on the same processor. The remaining
feasible schedules with greatest objective function value
(see next Section) will be selected as the optimal one.

• Shift Bottleneck Processor Once the optimal schedule
of bottleneck processor is determined, we shift the bot-
tleneck to the next processing unit which has maximal
value of MKk in the remaining processing units. The
whole process is terminated when all the processors are
traversed.

III. A SAFETY-PERFORMANCE METRIC

Our proposed scheduling approach requires an objective
function to optimize when selecting appropriate schedules.
While a typical function can be used, such as makespan,
we propose a metric that recognizes that safety can live on
a spectrum and, when appropriate, safety can be traded off
with system performance. Importantly, we do not suggest that
safety requirements are ignored, instead we propose to identify
safety-critical nodes and paths in our StochHC-DAG, allowing
our scheduler to ensure safety where necessary and then ex-
ploit remaining timing “headroom” to maximize performance.
Specifically, we propose a novel safety-performance metric

by defining a series of penalties/rewards based on violat-
ing/satisfying timing constraints in a StochHC-DAG. We start
with the concept that our metric should penalize when safety-
critical paths and/or critical nodes violate timing constraints
based on a particular schedule. This implies that a system
designer must label all paths and nodes in our StochHC-
DAG as either safety-critical or non-safety-critical based on the
application (e.g., a computational path for pedestrian detection
would certainly have a safety-critical label). With this in mind,
we define the first term of our metric which penalizes unsafe
critical paths:

f p
cp(S) =

∑
`i∈Cus

pcp(P (R`i > τ`i)− λ`i) (5)

In the above term, we define Cus as the set of safety-critical
DAG paths that violate a probabilistic timing constraint, that
is, P (R`i > τ`i) > λ`i where R`i is the random variable
describing the uncertain response time of critical path `i, τ`i
is the minimally safe response time for path `i, and λ`i is the
probabilistic timing constraint for `i. With these definitions,
and noting that f p

cp(S) represents a penalty term (p) for critical
path violations (cp) based on schedule S with a generic penalty
function pcp(·), equation (5) can be interpreted as penalizing
based on the deviation of every violating critical path from its
probabilistic timing constraint. Thus, if there are no safety-



critical paths that violate their timing constraints based on
schedule S then Cus = ∅ and f p

cp(S) = 0 yielding no penalty.
Otherwise, the severity of constraint violation dictates the
penalty, driving our schedule optimization to improve critical
path timing. It is important to note for the above term and
all terms defined below, that if a hard timing constraint is
desired, one can simply set λ`i = 0 which enforces sureness
of satisfying R`i > τ`i .

Next, we define a similar term for penalizing unsafe critical
nodes in a DAG:

f p
cn(S) =

∑
vi∈Vus

pcn(P (Rvi > τvi)− λvi) (6)

where Vus is the set of safety-critical DAG nodes that violate
a probabilistic timing constraint, that is, P (Rvi > τvi) > λvi
where Rvi is the random variable describing the uncertain
response time of critical node vi, τvi is the minimally safe
response time for node vi, and λvi is the probabilistic timing
constraint for node vi. Importantly, we model specific terms
for critical nodes as there may be instances where a timing
constraint for a critical path is satisfied but the system remains
unsafe. For example, if a localization and mapping node is too
slow, even if the computational path it lies on meets a timing
constraint, the staleness of the map may endanger the system
or bystanders.

With the penalties for our metric defined, we now describe
rewards gained when timing constraints for safety-critical
paths are satisfied. Critically, the following reward terms are
non-zero only when there exists no critical path or node
constraints that are violated. In this way, a system will focus
purely on safety when required, only balancing safety and
performance when all critical constraints are satisfied. The
reward terms for our metric are now:

f r
path(S) =

∑
`i∈P

α`ir
s
path(λ`i − P (R`i > τ`i))

+ (1− α`i)r
p
path(P (R`i))

(7)

and

f r
node(S) =

∑
vi∈V

αvir
s
node(λvi − P (Rvi > τvi))

+ (1− αvi)r
p
node(P (Rvi))

(8)

In the above, f r
path(S) and f r

node(S) represent a reward term (r)
for every path and node based on schedule S, respectively, with
generic reward functions rs

path(·), r
p
path(·), rs

node(·), r
p
node(·) that

separately reward safety margins (s) and system performance
based on timing (p). Then, with safety-performance balancing
parameters α`i , αvi , equations (7) and (8) can be interpreted as
rewarding for each DAG path and node, a balance of exceeding
timing constraints (safety margin) and system performance
related to improved response time (P (R`i) and P (Rvi

)).
Finally, with all terms defined our scheduler can optimize our
safety-performance metric defined as a weighted sum of terms
(5)-(8), yielding efficiently computable schedules that trade off
safety and system performance relative to probabilistic timing
constraints.
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Abstract—We regard the industry challenge as a multi-
objective real-time scheduling problem. Different from tradi-
tional methods, we model it as a nonlinear program (NLP)
and use gradient-based methods for efficient solutions. Different
requirements can be freely added as constraints, which gives
the proposed method effective for a large range of problems.
Furthermore, the proposed NLP scheduling method can utilize
available scheduling algorithm as initialization method, and
improve their performance even further. Preliminary evaluation
shows advantages against simple heuristic methods in compli-
cated problems.

I. INTRODUCTION

In this brief paper, based on the scheduling problem posed
by RTSS 2021 industry challenge [1], we model it as a
multi-objective scheduling problem and propose a general
scheduling method. Specifically, given a computing system
and multiple scheduling requirements, our method returns an
efficient scheduling algorithm that satisfies all the requirements
at the worst cost of pseudo-polynomial complexity. We envi-
sion that our approach can address the scheduling problem in
a broad range of real-time systems. In the following, we use
the original industry challenge as an example to illustrate our
methods. Necessary notations are introduced in this section.

We consider a single directed acyclic graph (DAG) model
G = (V,E) to describe computation works. Each node vi
has their own period Ti, worst-case execution time ci, relative
deadline di. An edge Eij , (vi, vj), goes from node vi to node
Vj means vj’s input depends on vi’s output. The overall DAG
graph G is not necessarily fully connected. The hyper-period,
the least common multiple of periods for all nodes in G, is
denoted as H . Within a hyper-period, the k-th instance of node
vi starts execution at time ski non-preemptively (required by
the industry challenge, but may be relaxed in our method),
and finishes at fki = ski + ci. For a node vi with precedence
constraints, we denote all its source tasks as pre(vi), and all
its successor as suc(vi).

A path in DAG is described by a node sequence λbe =
{vb, ..., ve}, which starts at node vb and ends at node ve, and
is connected in sequence, i.e., (vi, vi+1) ∈ E.
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There are multiple requirements posed to the scheduling
system:

• Schedulability. All the nodes should be schedulable, i.e.,

ri ≤ di (1)

In this paper, we consider implicit deadline for simplicity,
i.e., di = Ti.

• Computation resource bounds. All the computation
resources Ri (e.g., CPU, GPU) are not overloaded for any
time interval from ti to tj . The mathematical description
is given by demand bound function (DBF) [2] as follows

∀Ri,DBF(ti, tj) ≤ tj − ti (2)

We will give a more detailed description for this require-
ment in the methodology section.

• Sensor bound. If we use vi to denote a node under
consideration, and {vl|vl ∈ pre(vi)} represents all its
predecessor nodes, then for any instance vik with start
time at sik, the time difference of all the source data
tokens vlj must be smaller than Θs.

∀sik,∀slj ∈ {0 ≤ l ≤
H

Tl
|slj ≤ sik < sl(j+1)} : (3)

max
l
slj −min

l
slj ≤ Θs (4)

• Event chain. For all the event chains λbe, the response
time from its start at sbi to its end at sej should be
bounded:

∀ ∈ λbe, sej + ce − sbi ≤ Θe (5)

where the instances of vik ∈ λbe are matched by the
following constraints:

∀b ≤ i ≤ e, s(i−1)l ≤ sik ≤ s(i−1)(l+1) (6)

• Period constraints. All the instances of each task cannot
start earlier than the beginning of their periods.

∀i, k, sik ≥ Ti(k − 1) (7)

• DAG dependency. Each node cannot start until all its
dependency tasks have finished.

∀vi,∀l ∈ pre(vi), sl0 + cl ≤ si0 (8)
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Unlike traditional DAG systems where all the nodes have
same frequency, in our model where different nodes have dif-
ferent frequency, over-sampling or under-sampling [3] would
be unavoidable.

II. METHODOLOGY

We model the scheduling problem as an optimization prob-
lem, and propose to use gradient-based methods to solve it for
efficiency. The main framework is shown in Fig. 1.
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Figure 1: Main optimization framework

A. Schedulability analysis

We propose a new method to analyze schedulability for non-
preemptive situations based on the ILP formulation proposed
by Baruah [4]. The proposed algorithm is proved to yield the
same results as [4], but with worst computation cost of only
O(N2) (in average O(N log(N))) as opposed to O(N3) in
[4]. Formal description and proof are skipped because of word
limits, but the basic ideas are described as follows:

In non-preemptive situations, an equivalent schedulability
analysis can be obtained by calculating “interval” overlapping,
where an “interval” is defined as a task instance’s execution
interval. For example, job vik’s execution interval starts at sik,
and ends at sik + ci. If all the intervals are not overlapping
with each other, then the system is schedulable.

B. Optimization problem formulation

In this paper, we decide to formulate the scheduling problem
as an optimization problem. Inspired from operation research

[4], the variables are the start time of all the node instances
in the DAG graph G within a hyper-period. Such modeling
method is very flexible and can easily describe all the con-
straints without pessimistic assumptions. The constraints are
described in the previous section, as specified by Equation
eqs. (1) to (8). The optimization problem that we are con-
sidering is general, in the sense that different constraints can
be added or removed freely if only they can be expressed
mathematically.

The objective of the optimization is to find a set of start
variables for each task instance such that all the constraints
are satisfied.

C. Approximated unconstrained optimization

Depending on task periods, the optimization problem pro-
posed could have a large number of variables and constraints.
As such, integer linear programming proposed in Baruah’s
formulation [4] is not appropriate in our case. However,
efficient algorithms exist by noticing that most constraints as
described above are only concerned with a few variables. Such
sparsity is well exploited in many robotics and optimization
problems such as simulated localization and mapping (SLAM)
[5], [6], motion planning [7], where thousands or even millions
of variables are optimized together with fast speed.

To exploit such sparsity with nonlinear optimizer, we trans-
form the feasibility problem above into an unconstrained opti-
mization problem with barrier function [8]. Given a constraint
such as

f(x) ≤ 0 (9)

It is transformed into an objective function

Barrier(f(x)) =

{
0, f(x) ≤ 0

g(x), otherwise
(10)

where the g(x) > 0 is a punishment function for violated
constraints.

Since most constraints are linear with respect to their
variables, the punishment function is usually straightforward
to design. For example, the schedulability constraints

ri(s)− di ≤ 0 (11)

is transformed to

Barrier(ri(s)− di) =

{
0, ri(s)− di ≤ 0

di − ri(s), otherwise
(12)

After transforming constraints into objective function with
the barrier method, we formulate a least-square minimization
problem as follows:

min
s

M∑
m=1

Barrier2(fi(s)) (13)

Since the Barrier function always gives a positive error if some
constraints are violated, objective function 13 establishes a
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necessary and sufficient condition for schedulability analysis:
s is schedulable if and only if:

M∑
m=1

Barrier2(fi(s)) = 0 (14)

D. Gradient-based optimization method

After formulating an optimization problem, we use gradient-
based trust-region methods [7], [9] to solve it.

1) Numerical Jacobian evaluation: Since many constraints
are not differentiable, numerical methods are used to estimate
Jacobian matrix in these situations:

∂f

∂xi
=
f(x1, ..., xi + h, ..., xN )− f(x1, ..., xi − h, ..., xN )

2h
(15)

The h parameter above should be reasonably small to properly
estimate Jacobian matrix. Although numerical Jacobian is
simple, analytic Jacobian should always be preferred whenever
possible because it would save lots of computation cost.

2) Vanishing gradient problem: During optimization, some
points have 0 gradient with non-zero error, as shown in Fig.
2. To handle this issue, a simple idea would be increasing the
granularity, i.e., h in Equation 15, until the gradient is not zero
if the interval overlap error is not 0. More effective ideas such
as random walk will be exploited in the future.

Time0

Task 1

Task 2

Figure 2: When task 1’s interval(see section II-A) fully covers
task 2’s interval, gradient for both the start time of task 1
and task 2 would become 0, even though the system is not
schedulable.

E. Managing elimination forest

In this section, we propose a new algorithm named elimina-
tion forest to bring more efficient and effective optimization.
Let’s consider an unconstrained optimization problem:

min
x
f(x) (16)

where f(x) : Rn −→ Rm is a discrete function. Furthermore,
we assume this optimization problem is solved by gradient-
based methods as mentioned above. Two definitions are given
there for the ease of presentation.

Definition II.1 (Local optimal point). A point x0 is a local
optimal point if

∀∆ ∈ {Rn| |∆| = 1}, δ −→ 0 :

f(x0) ≤ f(x0 + ∆δ) (17)

Definition II.2 (Pseudo-local optimal point (PSOP)). A point
x0 for an objective function f(x) is called pseudo-local
optimal point if

• It is judged as a local optimal point from Jacobian J ,
Hessian H or their variants:

δ −→ 0 : f(x0) < f(x0 + ∆(J,H)) (18)

where ∆ is given by the common gradient based meth-
ods such as steepest descent, Gauss-Newton, Levenberg-
Marquardt (LM) [10], [11], Dogleg(DL) [12], etc.

• It is not a local optimal point, i.e.,

∃∆ ∈ {Rn| |∆| = 1}, δ −→ 0 :

f(x0 + ∆δ) ≤ f(x0) (19)

1) Leaving PSOC by elimination: In our experience, it is
very common that the optimization algorithm is stuck at a
local optimal or a pseudo-local optimal point. Two possible
reasons are summarized:

• Numerical Jacobian at a discrete point is not estimated
appropriately such that the Jacobian matrix becomes
very large towards one direction. As a result, optimizer
tends to go along the opposite direction, which may be
misleading.

• Some constraints are very tight such that slightly adjust-
ing some variables to optimize the objective function in
one direction will cause other constraints to be violated.

Both two situations suggest that we may be able to leave
this situation if we can leave some dimension of objective
function out of consideration. For example, if the optimization
algorithm terminates at some point x0 and f(x0) > 0, we
would go through each dimension fi(x)0, if we find that

fi(x0) = θ (20)

where θ ≥ 0 is smaller than a very small pre-defined threshold,
then we stop optimizing toward this criteria, and eliminate this
dimension from objective function. To keep variables remain
at fi(x0) in the future, we transform it into a constraint added
to the variables in such a form

xk = g(x0, θ) (21)

In other words, xk depends on other variables and can be
derived from Equation 21. In the following optimization loops,
xk will always be replaced with its dependency variables based
on Equation 21.

2) Building elimination forest: As the iteration loop con-
tinues, more and more variables may be eliminated and
could bring confliction. Inspired from Bayes tree proposed by
Kaess et al. [13], we propose elimination forest, an efficient
algorithm for managing elimination.

Building an elimination forest is simple. First create a node
(root for a tree) for each variables. Each time a variable
is eliminated, add dependency edges from the eliminated
variables to the dependency variables. Since all the nodes in a
tree have fixed relative value (given by equation 21), adding a
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Figure 3: Managing elimination forest: After adding an edge
from node 7 to node 8, all the nodes in tree 1 and 2 have fixed
relative value. Careful attention must be paid to prevent related
nodes, such as node 6 and node 2, violate some constraints.

new dependency may indirectly make some nodes in those two
trees violate some constraints. In that case, confliction check
must be performed to all the nodes in the two related trees.
An example is given in Fig. 3.

Building elimination forest is also helpful in improving al-
gorithm efficiency because all the nodes inside an elimination
tree are already checked to be confliction-free. When two
nodes are considered to be added together, we only need to
check confliction between the two trees. It will save more
time and effort when performing optimization with respect to
a large number of variables.

F. Initial solution estimation

Flexible initialization policy makes NLP compatible with
most available scheduling algorithms to achieve further per-
formance boost. If only one scheduling algorithm could satisfy
parts of requirements, then it can be used as initialization
and the proposed algorithm is expected to work better. For
example, Rate Monotonic is used in our experiments.

III. PRELIMINARY RESULTS

Because of time limits, we only finished partial, slow
implementation of the proposed ideas. The algorithm is tested
in 500 random task sets, whose periods are limited to a small
range {100, 200, 300, 400, 500} for fast evaluation. The results
are summarized in Table tables I to V. The first row reports
initialization method’s performance, second row reports base-
line optimization method simulated annealing (SA), third row
are the proposed NLP algorithm. All the experiments within
one table have the same initialization, and all the experiments
are evaluated based on the same task sets.

Several preliminary conclusions can be drawn from these
experiments:

Algorithm 1: Managing elimination forest inside one
iteration
Input: variables x after performing unconstrained

optimization, elimination graph G
Output: elimination graph G

1 if G is empty then
2 Add x as independent nodes to G
3 else
4 end
// iterate over objective function

5 for (i = 0; i < m; i = i+ 1) do
6 if fi(x) ≤ θ then
7 x0 = Eliminated variable
8 X = Dependency variables
9 Trees = {}

10 for (xj ∈ {x0, X}) do
11 Trees.add( ExtractSubGraph(G, xj))
12 end
13 if CheckConfliction(Trees) then
14 G. AddEdge(x0, X)
15 end
16 end
17 end
18 return G

• The proposed algorithm improves around 50% to 1000%
acceptance rate in the experiments, which proves the
validity and effectiveness of the algorithm.

• The proposed algorithm can easily handle systems with
different constraints and requirements.

• Although relying on a reasonable initialization method,
the proposed algorithm does not require a very good
initialization, which is critical in practice.

• It takes a longer time than the baseline methods, which
we believe is mostly an implementation issue and can be
improved.

In the near future, we will perform more extensive experi-
mental evaluation on larger random task sets. Another major
goal is to look at ways to improve the runtime efficiency of
the proposed methods.
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Table I: Random task sets subject to DBF, DAG constraints, single processor

Algorithm Accept rate
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SA RM Optimize 54.4% 54.4% 54.87 54.87 0.446
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Average time
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I. INTRODUCTION

The RTSS 2021 industry challenge deals with real-
time constraints in deep processing pipelines with strong
dependencies among different stages. Such pipelines are used
for autonomous vehicles and an example is illustrated in
the challenge’s announcement. At first, we want to clarify
the concept of an ”event”, we define it as the arrival of
an input data token at the first stage of the pipeline. The
challenge asks for strategies to guarantee the following three
timing-constraints:

Requirement 1: Reaction time

For any event, the end-to-end latency from a source to
a destination is bounded by a predefined value.

Requirement 2: Data age

For a data token b produced at a specific final output,
the causing token must not be older than a predefined
threshold.

Requirement 3: Data age difference

For each task, the age difference among all its input
data is bounded by a predefined value.

Fig. 1 shows the periodical activation of the two tasks τ1
and τ2 with a read/write dependence. In addition, it illustrates
our understanding of reaction time and data age. Thereby,
the reaction time is the delay from the causing event to the
first output data token considering this event. The data age
is the elapsed time beginning from the output of a certain
task instance to the past event, which caused it. Typically, the
considered task instance is the final instance i.e. the last one
processing the event’s input data token. Reaction time and data

reaction
time

time

data age

read point
write point
data flow
activation

Fig. 1. Data propagation in pipeline with read/write jitter

age are therefore very similar and can be regarded as forward
and backward definition of end-to-end latency of data token
flow [1].

We propose System-Level LET (SL-LET) as a design model
and programming paradigm for the system type envisioned by
the challenge’s “problem model”. SL-LET is an extension of
the well known Logical Execution Time (LET) programming
paradigm [2], where each task has a fixed logical execution
time. The reading and writing of input/output data tokens
occurs instantaneously at the beginning and end of the LET
interval. Because the SL-LET concept enforces the fixed
logical execution time, it allows to predetermine when data
tokens are written and read by a task. Thus, SL-LET achieves
deterministic timing of the data token flow. As a result, system
designers can easily compute these read/write time instants
and derive end-to-end timing bounds for the data token flow
along a processing pipeline [3]. This is in harsh contrast to an
execution model where outputs of a task instance are written
immediately after the instance’s completion (see Fig. 1). This
leads to many possible scenarios for data-age and reaction
time.

Furthermore, we propose the modification of an existing
middleware layer to deploy SL-LET and time determinism as
easily and transparent as possible.

In the following we will explain SL-LET in more depth,
discuss how it fulfills the given requirements, where it offers
more generality and where it requires stricter constraints.



II. SYSTEM-LEVEL LET

SL-LET [4] is an extension to the LET design paradigm.
Therefore, the main objectives of LET will be explained first
[2].

The time an instance j of task τi takes from activation
until the instance is completed is called the response time
Ri,j . Thereby, the maximum possible response time is called
the worst-case response time (WCRT) and is denoted as Ri.
In the real-time domain it is often demanded that a task
always completes before or at least at its deadline di i.e.
Ri,j ≤ di ∀j. But the response time Ri,j varies depending
on numerous factors from run to run. Such a variation is
commonly known as (response time) jitter. Control systems
require time-deterministic input/output behavior to reach the
specified level of stability and a certain degree of robustness.
But jitter negatively affects determinism and is therefore
unwanted or even unacceptable for such systems.

LET enables a jitter-free communication by masking the
physical execution time with a fixed logical execution time.
Instead of Ri,j ≤ di ∀j, LET enforces Ri,j = LETi ∀j i.e.
the response time for every instance is supposed to equal a
constant value LETi which is known as logical execution time.
However, to meet the deadline, it is necessary to set LETi ≤
di. Since LET changes the requirement of the response time,
it is also considered as a design model.

To be able to abstract from physical execution time, the
implementation needs to enforce the logical execution time. To
achieve this, LET requires read/write operations in zero time
and an instantaneous write propagation to all readers. This is
a strong assumption, but it can be fulfilled for inter-process
communication within a non-distributed platform featuring
a shared memory architecture. Since automotive software
components are typically distributed among different hardware
units and exhibit significant communication delays, we aim to
provide a general solution to cope with such complex prob-
lems. In consequence, we assume that data propagation is not
instantaneous, but can be bounded by a constant value. To be
able to deploy LET despite communication delay e.g. between
different processing platforms, SL-LET was introduced.

SL-LET preserves the properties of LET for communication
within a single platform and exclusively deals with data trans-
fer in case of communication delay. Similar to the physical re-
sponse time of a task executing on a non-distributed hardware
platform, the physical communication time, i.e. the exchange
of data tokens between distributed hardware platforms, takes a
certain amount of time and exhibits a jitter, therefore affecting
time determinism. Hence, the solution is the same as the one
applied to the physical response time: masking it. The transfer
time is hidden in the response time of a so called SL-LET
interconnect task. Thereby, the task’s only objective is to copy
data from one platform to another time-deterministically. This
is achieved by reading at the beginning and writing at the
end of the logical execution time interval LETi. The time
instants of reading and writing are fixed and predetermined
based on the platforms local clocks. As a result, it is necessary

time
read point write point data flow

activation candidate for data age and reaction time

(a) (b) (c) (a) (b) (c)

(a)

Fig. 2. Data propagation in pipeline without read/write jitter

to synchronize the local clocks among each other, while a
small error of ε is tolerated [5]. Note, that synchronized clocks
are quite common in today’s distributed networks.

III. SOLVING THE PROBLEM MODEL

As already mentioned, the read and write points in the
SL-LET paradigm are performed at fixed time instants and
are not affected by jitter or delays. Subsequently, tasks imple-
mented with the SL-LET paradigm are time-deterministic i.e. a
task produces a sequence of outputs with the exact same timing
behavior at any iteration. Due to that benefit, engineers can
easily calculate upper-bounds for the end-to-end latency. In
contrast to that, in a traditional execution model, tasks would
write their outputs immediately after an instance has finished.
Hence, the resulting output jitter of output data tokens would
be between best-case response time (BCRT) and WCRT. It
would further be amplified by the fact, that it is not guaranteed
for tasks to read their inputs at the point of their activation, as
they may experience blocking due to scheduling. Note that the
combined effects of output and input jitter accumulate along
a pipeline. This would create a large continuum of possible
reaction times, data ages and also data age difference. Such a
behavior is illustrated in Fig. 1, where two tasks are activated
with a certain period and write their results at the moment the
calculation is completed. Since the jitter is hardly predictable,
the reaction time and data age of an event is unknown and
can only be upper and lower bounded [6].

In contrast to that, the outstanding property of SL-LET
limits the computed reaction time and data age to a few
possible candidates rather than (continuous) intervals between
a minimum and a maximum. The same example as in Fig. 1
is shown in Fig. 2, but with SL-LET and therefore without
jitter. It can be seen, that the given example has only three
possible candidates for data age and reaction time (these are
denoted in Fig. 2 as ”(a)”, ”(b)”, and ”(c)”). This simplifies
the calculation of upper-bounds for reaction time as well as
for data age compared to traditional execution models. Same
holds true for the data age difference, since there is only a
limited number of possible candidates [7]. SL-LET therefore
not only upper bounds the reaction time, data age and data age
difference, but these values can be computed at design-time,
because the candidates occur in a deterministic order.



Another useful benefit of SL-LET is its composability
with respect to the LETi [5]. That means, as long as the
logical execution time interval LETi is neither shortened nor
extended, the task itself can be completely rewritten, updated
or even moved to another processing unit without changing the
timing behavior of the data token flow. This is a key property
to update (autonomous) vehicles without necessarily repeating
timing verification processes for every update and the whole
system. Note, in systems with traditional execution models,
the update of a single task would change the timing behavior
completely. This would not only include tasks in a read/write
relation to the updated one, but any task in the system.

The challenge’s problem model states that the worst-case
execution time (WCET) of each task is known in advance
and the scheduling is performed non-preemptively. Despite the
fact, that SL-LET supports preemptive scheduling algorithms
as well, these assumptions simplify the determination of
logical execution time intervals LETi. Without activation jitter
(this is enforced by SL-LET) and preemption the WCRT can
easily be calculated from the WCET and thus LETi can be
set to the task specific WCRT. In fact, SL-LET guarantees the
required timing-constraints of the challenge solely, due to a
time-deterministic communication, based on the enforcement
of jitter-free communication.

Though SL-LET offers numerous benefits, it may seem
challenging to adopt an existing system of applications to the
SL-LET programming paradigm. Especially, if applications
are used, which are developed by suppliers or communities
unfamiliar with real-time constraints. We are aware of such
reservations and subsequently implemented SL-LET in the
widespread middleware framework Data Distribution Service
(DDS) [8]. Namely, we extended eProsima’s Fast-DDS im-
plementation1. Since many applications in automotive (e.g.
AUTOSAR [9]) or in the robotic domain (e.g. ROS2) support
or even completely rely on DDS for communication, it enables
the transparent usage of SL-LET without further effort, except
providing a task specific LETi.

IV. CONCLUSION

We described the main properties and benefits of SL-LET
and illustrated that a time-deterministic communication is
sufficient to fulfill the RTSS 2021 industry challenge’s timing
constraints. Time determinism enables the system designer to
derive upper-bounds for reaction time, data age and data age
difference while the SL-LET implementation guarantees these
upper-bounds. Furthermore, a middleware, namely DDS, can
be deployed to switch comfortably from a traditional execution
model to SL-LET.
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I. INTRODUCTION AND RESEARCH CHALLENGE

Input/Output (I/O) peripherals are a vital part in modern embedded real-time systems, as the I/Os
often interface with physical sensors and actuators that need to either sense a potential hazard in time
or make a manoeuvre to avoid danger. In autonomous driving system [1], the planning module makes
decisions based on perception of external environments using different input I/O data, e.g., images, point
clouds, and localisation information provided by a camera, a Lidar, and a GNSS, respectively. With the
determined driving routine, the vehicle can control controlled correspondingly using different I/Os, e.g.,
motor controls in chassis.

To ensure the correctness and effectiveness of the safety-critical modules, I/O operations usually require
restricted demands on both timing-predictability — having an analytical bound for the worst-case, and
timing-accuracy — getting executed at exact time instants (or at least within a small time range) [2], [3].
Considering the aforementioned example, when the vehicle’s location is altered from the expected control
time points, the input I/O data can be invalid, and the output I/O control may even cause a mistake.

The I/O timing requirements were implicit in a conventional real-time system, as the systems usually
had relatively lower system complexity and fewer I/O peripherals, where a timing-predicable/accurate
I/O operation can be achieved based on the interrupt of a high-resolution timer (e.g., the micro-second
timer provided by an RTOS [4]–[6]). However, with the growing system complexity and number of
I/Os, the complex I/O access paths and complicated resource management lead timing-predictable and
timing-accurate I/O operations to be challenging to achieve. For instance, to access an I/O device in a
Network-on-Chip (NoC) based many-core system (see Fig. 1), I/O requests must pass through the OS
kernel, I/O manager and different low-level drivers at the software; when it comes to the hardware, the
I/O requests are also needed to be transmitted through multiple routers/arbiter and an I/O controller.
After processing, corresponding results (i.e., I/O responses) are transmitted back to a processor or a
memory module using a similar routine as the I/O requests. Such complex paths introduce significant
communication latency and timing uncertainty to the I/O operations. Moreover, along the transaction
paths, potential resource contentions occur frequently, which involve additional resource management
throughout the entire system. The resource management magnifies the difficulty of satisfying the real-
time requirements of I/O operations [3].

II. A PROTOTYPE FRAMEWORK FOR I/O-PREDCITABLE REAL-TIME SYSTEMS

In order to guarantee the timing-predictability and timing-accuracy of I/O operations in a NoC-based
many-core system, I/O requests and responses are both required to be taken into considerations. With this
in mind, we present
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Fig. 1. I/O operations in conventional many-core heterogeneous systems involve complex I/O access paths and resource management
at all system levels, leading to challenges in guaranteeing its real-time performance (C: processor core; N: neural engine; G: GPU;
D: DSP; MC: memory controller).

• A programmable real-time I/O controller (named I/O-NoC-RT) to replace the conventional I/O
controllers (e.g., CAN controller in Fig. 1). The I/O-NoC-RT can operate periodic I/O requests
at exact time points and execute sporadic I/O requests with an analytical time bound.

• An allocation algorithm to allocate I/O-NoC-RT to the routers, optimising the routines of I/O
responses and reduce contentions on the NoC.

A. I/O-NoC-RT: A Programmable Real-time I/O Controller

Typically, I/O tasks in a system can either be periodic or sporadic. The periodic I/O tasks are usually
determined before system execution, e.g., periodic sensor read; and the sporadic I/O tasks are often
generated during system execution, e.g., sporadic body control.

At system initialisation, I/O-NoC-RT pre-loads periodic I/O tasks and records their timing information
(e.g., starting time points, time budgets, etc.) using a time slot table. In the time slot table, I/O-NoC-
RT also reserves certain time slots for the hard real-time (HRT) sporadic I/O tasks in a periodic manner.
During system execution, I/O-NoC-RT runs the periodic tasks at their specified times without involving the
complicated I/O request path and complex resource management (described in Fig. 1), which guarantees
their timing-accuracy and timing-predictability. At the same time, I/O-NoC-RT also receives and buffers
the run-time sporadic I/O tasks issued by the processors, and executes them when the periodic tasks are
not occupying the I/O. With the reserved time slots, I/O-NoC-RT provides analytical bounds for the HRT
sporadic I/O tasks.
I/O-NoC-RT design. Fig. 2 illustrates the micro-architecture of I/O-NoC-RT, mainly containing a request
channel and a response channel.
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Fig. 2. Micro-architecture of real-time I/O controller (SRT-S: software real-time sporadic tasks; HRT-S: hard real-time sporadic
tasks).

Request channel. In request channel, we deploy a memory module to store the periodic I/O tasks and the
time slot table, which are loaded during system initialisation. Also, we employ two FIFO queues to buffer
the HRT and soft real-time (SRT) sporadic I/O tasks sent by the processors at run-time. Between the
memory module and the FIFO queues, we introduce a scheduler, which synchronises with a global timer
and compares the synchronised results with the time slot table. Once the system executes at a starting
time point of a periodic (HRT sporadic) I/O task, the scheduler loads the task from the memory unit
(FIFO queue) to the connected I/O controller for execution. If no task is required to be executed at a time
point (i.e., the time slots are free), the scheduler executes the sporadic (either HRT or SRT) I/O tasks.

Response channel. The response channel is pass-through, since the processing speed of the processors
is usually hundreds of times faster than the I/O peripherals. Alternatively, a pre-processing unit (e.g.,
checking the validness of a response) can be deployed in the response channel to reduce data workload
of I/O responses. This is implemented with a generalised pre-processing unit that can be loaded with
user-defined code. Examples includes (1) implementing a CRC check for most communication protocols,
e.g., CAN and Ethernet; (2) define data pre-processing procedure such as dividing images or remove
anomaly data using DSP. Note there is only limited computation power in this unit and thus it should be
size-bounded and, to guarantee timing, time-bounded.

Router optimization. Additionally, as packets are transmitted non-preemptively on the on-chip network,
route optimization can be performed to determine which node to be allocated at which network location,
in a way that the interference and contention on the inter-connections can be minimized. The process
includes modelling of the I/O streams spatially and temporally, by giving their transmission time and data
workload.



B. Summary

Modern real-time embedded systems are integrating increasingly more I/O peripherals, driven by the
diverse functionalities required by modern embedded computing and the rapid evolution of manufacturing
processes in the semiconductor industry. In modern real-time systems, conventional methods, e.g., relying
on high-resolution timers in RTOS, are facing challenges to guarantee the restricted timing demands of
I/O operations due to complicated resource management and complex I/O access paths. In this work, we
identified that achieving real-time I/O requires considerations of both I/O requests and responses. With
this in mind, we proposed (i) a novel I/O controller which can operate periodic I/O requests at exact
time points and execute sporadic I/O requests with an analytical time bound; (ii) an allocation algorithm
to allocate the new I/O controller to the routers, optimising the routines of I/O responses and reduce
contentions on the NoC. Due to the page limits, we only give the top-level overview of the work and
leave detailed implementation and evaluation in future work.
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