
RTSS 2021 Industry Challenge

Perceptln
https://www.perceptin.io

2021

1 Background

The commercialization of autonomous machines, including mobile robots, drones,
and autonomous vehicles etc., is a thriving sector, and likely to be the next major
computing demand driver, after PC, cloud computing, and mobile computing.
However, autonomous machines are complex and safety critical systems with
strict real-time and resource constraints.

Different from other computing workloads, autonomous machines have a
very deep processing pipeline with strong dependencies between different stages
and various local and end-to-end time constraints. Figure 1 shows an example
of the processing graph of an autonomous driving system. Starting from the
left side, the system consumes raw sensing data from mmWave radars, LiDARs,
cameras, and GNSS/IMUs, and each sensor produces raw data at a different
frequency. The processing components are invoked with different frequencies,
performing computation using the latest input data and produce outputs to
downstream components periodically.

Figure 1: Processing Graph of An Autonomous Driving System

The cameras capture images at 30 FPS and feed the raw data to the 2D
Perception module, the LiDARs capture point clouds at 10 FPS and feed the
raw data to the 3D Perception module as well as the Localization module, the
GNSS/IMUs generate positional updates at 100 Hz and feed the raw data to

1



the Localization module, the mmWave radars detect obstacles at 10 FPS and
feed the raw data to the Perception Fusion module. The result of 2D and 3D
Perception are fed into the Perception Fusion module to create a comprehensive
perception list of all detected objects. The perception list is then fed into the
Tracking module to create a tracking list of all detected objects. The tracking
list then is fed into the Prediction module to create a prediction list of all objects.
After that, both the prediction results and the localization results are fed into
the Planning module to generate a navigation plan. The navigation plan then
is fed into the Control module to generate control commands, which are finally
sent to the autonomous vehicle for execution at 100 Hz. The computation com-
ponents are deployed on different types of processing platforms. For example,
the sensor data processing may be deployed on DSPs, the perception and local-
ization may be deployed on GPUs as they typically require vector processing,
and planning and control tasks can be deployed on CPUs as they mainly involve
scalar processing. In general, the processing graph could be more complicated
than the example shown in Figure 1. There could be more processing steps in
the system. The activation frequency of each component could also be different
from the example.

The system must comply with timing constraints in several aspects to guar-
antee that the final control command outputs can be executed correctly and
timely. First, if there is some object appears close to the vehicle, it must be
guaranteed that its related information can be perceived, processed and finally
used to generate control commands with in a certain time limit. Second, the
control command should be performed based on status information (e.g., the
GNSS/IMU data) sufficiently fresh. Third, when some component receive data
originated from different sensors, the time difference among the timestamps of
the corresponding raw data must be no larger than a pre-defined threshold so
that information from different sensors can be synchronized and fused.

2 Problem Model

In the following, we introduce a problem model based on the architecture and
timing constraints of real-time computing systems for autonomous machines.
Note that this abstract problem model could be significantly more complex than
the processing systems that we already deployed in reality. However, studying
the problem with a more general setting is meaningful to explore larger design
space and deal with more complex systems that we may develop in the future.

The system consists of a number of tasks executing on a hardware platform
consists of several processing units (e.g., CPU, GPU or DSP). Each task is
statically mapped to a processing unit and the mapping is fixed in prior. The
worst-case execution time (WCET) of each task on the corresponding processing
unit is known in advance.

Each task is activated for execution according to a given frequency. The
frequencies of different tasks are not necessarily harmonic. Each task reads
input data tokens from one or multiple input ports, and produce output data

2



tokens to one output port. Tasks are connected with their input/output ports,
with buffers of size 1 in between. The old data token in the buffer is over-written
when a new data token is produced. Tasks reads and writes data from/to the
buffers in a non-blocking manner. In each activation, a task reads the current
data token in the buffer of each input port when it starts execution, and writes
the output data token to buffer at its port at the end of its execution. We
assume that the data communication delay between different tasks is zero or
can be bounded by a constant (even if tasks are executed on different processing
units).

Some task simply generates data tokens based on a given frequency (but do
not read any input data token). We call such tasks the sensing tasks. Some
sensor data are status sensing data and some sensor data are event sensing data,
so the sensing tasks are classified into two types: status sensing tasks and event
sensing tasks. Status sensing data are used for reporting the status. Event
sensing data are used for detecting some event. When an event happens, all the
output data token produced by the corresponding sensing task after that will
capture this event.

When a task reads several input data tokens (from different input ports) and
produces a output data token, we say the input data token is the “cause” of
the output data token. The original sensor data that indirectly being the cause
of a data token is the “source” of the data token. Each sensor data token is
associated with a timestamp.

The system should satisfy the following timing constraints

• For each task, the difference of the timestamps among all its source data
tokens must be upper-bounded by a pre-defined value.

• For any event, it must be guaranteed that the first final data output
caused by the event sensor data capturing this event is produced within a
pre-defined time delay after the event occurs.

• Let a be a sensor data token and b be the final data output indirectly
caused by a. If b is produced at t, then a must be produced no earlier
than a pre-defined value before t.

The problem to solve is to develop scheduling strategies and analysis tech-
niques to guarantee the systems to meet all the above timing constraints. The
scheduling strategy on all processing units must all be non-preemptive.

Note that we invite not only general solutions for the above described prob-
lem model, but also solutions for more restrictive versions based on the above
described problem model. In other words, you may consider to add more con-
straints to the problem model if they are helpful to improve the real-time perfor-
mance and/or simply the design and analysis of the problem (e.g., the relative
relation of frequency of different tasks, the maximal number of tasks mapped to
each processing unit, various structural constraints of the processing graph and
so on). We are also open to possible collaboration with the solution provider to
implement and evaluate their solutions with our realistic systems.

3


